scholarly journals USE OF PHOSPHORIC ACID AS BIOADSORBENT ACTIVATOR OF KETAPANG LEAVES (Terminalia sp.) TO REDUCE RHODAMINE B CONTAMINANTS

Konversi ◽  
2021 ◽  
Vol 10 (2) ◽  
Author(s):  
Nadya Hasna ◽  
Dedy Suprayogi ◽  
Abdul Hakim

Ketapang contains tannin and phenolic compounds which are known to absorb metals and pollutants in the air. The purpose of this study was to determine the effectiveness of the biadsorbent from ketapang leaves (Terminalia sp.) on the adsorption of Rhodamine B dye without activation and with activation by 10% phosphoric acid. The study began with testing the variation of mass, time, and concentration of Rhodamine B by ketapang leaves. Then the adsorption process was carried out using a batch system and the concentration of the filtrate was measured using a UV-Vis spectrophotometer. Followed by the isotherm analysis of Freundlich and Langmuir. The results showed that the bioadsorbent ability of ketapang leaves without activation or with activation by 10% H3PO4 in terms of mass variation, contact time, and Rhodamine B concentration were 300 mg, contact time was 90 & 120 minutes, and Rhodamine B concentration was 10 mg/l. - 30 mg/l. The maximum bioadsorbent capacity of ketapang leaves (Qm) without activation was 3.7037 mg/g, while that of ketapang leaves with phosphoric acid activation was 1.0673 mg/g. The adsorption model used by the ketapang leaf bioadsorbent is the Freundlich isotherm where the R2 value close to 1 is 0.9573.

2019 ◽  
Vol 20 (1) ◽  
pp. 130 ◽  
Author(s):  
Ani Iryani ◽  
Hadi Nur ◽  
Mardi Santoso ◽  
Djoko Hartanto

Rhodamine B (RB) and Methylene Blue (MB) dyes adsorption using adsorbent ZSM-5 synthesized from Bangka kaolin were investigated in this study. The effects of the initial concentration, contact time and temperature on the adsorption process were also analyzed. The effect of the initial concentration and contact time played an important role in the adsorption process; however, the effect differs significantly in both dyes. The temperature plays little role in the dye adsorption process. The results showed the adsorption process occurred in ZSM-5 adhere to Langmuir isothermal adsorption model showing that the adsorption process occurred to be monolayer. Based on the kinetics studies, the pseudo-first-order kinetic model represents the adsorption kinetics that occurs for both dyes onto the synthesized ZSM-5. Thermodynamic parameters namely Gibbs free energy (ΔG°), standard entropy changes (ΔS°) and standard enthalpy (ΔH°) reveal that the adsorption process onto ZSM-5 for both dyes was spontaneous and exothermic.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1522
Author(s):  
Salma Jabeen ◽  
Muhammad Sufaid Khan ◽  
Rozina Khattak ◽  
Ivar Zekker ◽  
Juris Burlakovs ◽  
...  

The catalytic activity of Pd/ZrO2 was studied in terms of the degradation of rhodamine-B dye in the presence of hydrogen peroxide. Pd/ZrO2 was prepared by impregnation method, calcined at 750 °C and characterized by XRD, SEM and EDX. The catalyst showed good catalytic activity for dye degradation at 333 K, using 0.05 g of the catalyst during 5 h. The reaction kinetics followed the pseudo-first order kinetics. The Freundlich, Langmuir and Temkin isotherms were applied to the data and the best fit was obtained with Freundlich isotherm. Thermodynamic parameters, like ΔH, ΔG and ΔS were also calculated. The negative values of ΔH (−291.406 KJ/mol) and Gibbs free energy (ΔG) showed the exothermic and spontaneous nature of the process. The positive ΔS (0.04832 KJ/mol K) value showed suitable affinity of catalyst for dye degradation. The catalyst was very stable, active and was easily separated from the reaction mixture by filtration. It can be concluded from the results that the prepared catalyst could be effectively used in dyes degradation/removal from water subjected to further validation and use for various dyes.


KOVALEN ◽  
2019 ◽  
Vol 5 (3) ◽  
pp. 308-314
Author(s):  
Musafira Musafira ◽  
Nurfitrah M Adam ◽  
Dwi Juli Puspitasari

The investigation about the utilization of Banana peel (Musa paradisiaca) as biosorbent Rhodamine B dye has been done The purpose of this study was to determine the maximum contact time and to determine the adsorption capacity of kepok banana peel. Completely randomized design (CRD) was used in this research with two variables (the contact time and Rhodamine B concentration. Both variables were done in five levels i.e 10, 30, 60, 90, and 120 min and 2, 4, 6, 8 and 10 ppm respectively. The result showed that the maximum concentration of banana peel in adsorbing Rhodamine B was 6 ppm with 120 of contact time, and Rhodamine B adsorption capacity was  4.55mg/g. Keywords: Banana peel, Rhodamine B, biosorbent


Jurnal Kimia ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 104
Author(s):  
W. P. Utoo1 ◽  
E. Santoso ◽  
G. Yuhaneka ◽  
A. I. Triantini ◽  
M. R. Fatqi ◽  
...  

The aim of this research is to get activated carbon from sugarcane bagasse with high adsorption capacity to Naphthol Yellow S and to know factors influencing the adsorption capacity. Activated carbon is prepared by incomplete combustion of sugracane bagasse. The resulting carbon is activated with H2SO4 with concentration variation of 0.5; 1.0; 1.5 and 2.0 M and is continued by calcination at 400 °C. The measurement of the surface area of ??activated carbon by the methylene blue method indicates that the activation process successfully extends the surface area of carbon from 31.87 m2/g before activation to 66-72 m2/g after activation. Activated carbon with concentration of 2.0 M H2SO4 showed the highest surface area of ??71.85 m2/g, however, the best adsorption was shown by activated carbon with a concentration of 0.5 M H2SO4 with the adsorption capacity of 83.93%. The adsorption test showed that the best amount of adsorbent was 0.2 g with contact time for 30 minutes. Prolonged contact time can decrease the amount of Naphthol Yellow S adsorbed. The best adsorption test result was shown by sample with activator concentration of 0,5 M, mass of 0,2 g and contact time of 30 min with adsorption capacity 95,81% or amount of dye adsorbed equal to 143,72 mg/g. The adsorption study also showed that the entire Naphthol Yellow S adsorption process followed the Langmuir isothemal adsorption model. Qualitative testing of real batik waste indicates that activated carbon can reduce the dyes waste containing Naphthol Yellow Sexhibited by the color of batik waste which is more faded.  


2020 ◽  
Vol 81 (1) ◽  
pp. 159-169
Author(s):  
Feyza Ergüvenerler ◽  
Şerif Targan ◽  
Vedia Nüket Tirtom

Abstract Simple, fast, effective, low cost and waste biosorbents, lemon, bean and artichoke shells, were used to remove lead (II) ions from aqueous solution. The influence of pH, contact time, temperature and lead (II) concentration of the removal process was investigated. The sufficient contact time was deemed 10 minutes for bean and artichoke shells and 60 minutes for lemon shells for Pb(II) ions. The thermodynamic parameters, such as standard free energy (ΔG), standard enthalpy (ΔH), and standard entropy (ΔS) of the adsorption process were calculated as −5.6786, −5.5758, −3.1488 kJmol−1 for ΔG, −7.2791, −20.285, −9.5561 kJ mol−1 for ΔH, −0.00545, −0.05017, −0.02185 kJ mol−1 K−1 for ΔS, respectively, for lemon, artichoke and bean shells. Maximum adsorption capacities of lead (II) were observed as 61.30 mg g−1, 88.5 mg g−1 and 62.81 mg g−1, respectively, for lemon, bean and artichoke shells according to the Freundlich isotherm model at 20 °C. Scanning electron microscope (SEM) and energy-dispersive X-ray detector (EDX) were used to characterize the surface morphology of the adsorbents. Consequently, Pb(II) removal using lemon, bean and artichoke shells would be an effective method for the economic treatment of wastewater.


2019 ◽  
Vol 107 (5) ◽  
pp. 377-386 ◽  
Author(s):  
Cansu Endes Yılmaz ◽  
Mahmoud A.A. Aslani ◽  
Ceren Kütahyalı Aslani

Abstract Adsorption of thorium onto nitric acid modified multi-walled carbon nanotubes was investigated by central composite design as a function of contact time, pH, initial thorium concentration and temperature. The results showed that optimum uptake capacity was 65.75±2.23 mg·g−1 with respect to pH=4, initial thorium concentration of 100 mg·L−1, 25 °C and 15 min contact time. Thermodynamic parameters [standard enthalpy (ΔH0), entropy (ΔS0), and free energy (ΔG0)] were calculated, and the results indicated that adsorption was endothermic. Langmuir, Freundlich and Dubinin-Radushkevich isotherms have been investigated in order to characterize the adsorption process in the range of 25–100 mg·L−1 initial thorium concentration. The Freundlich isotherm is the best suited as a model because it has the highest correlation coefficient (R2=0.9485). The pseudo-second order kinetics well defined the adsorption process.


Author(s):  
Qingqing Liu ◽  
Xiaoyan Li

The activated MgO was synthesized by microwave homo-precipitator method and characterized by SEM, EDS and FT-IR methods. It was used to adsorption of U(VI) from aqueous solution with batch system. The paper discussed the effect of pH, temperature, contact time, adsorbent dose and initial U(VI) concentration on the adsorption. The results showed that activated MgO has good adsorption capacity for U(VI), the removal rate and equilibrium adsorption capacity reached 83.5% and 84.04mg·g−1 at pH 5.0, 15mg dose and 313K,respectively. The adsorption kinetics of U(VI) onto activated MgO were better fitted with pseudo-second-order kinetic.The adsorption isotherm data were fitted well to Freundlich isotherm model.The thermodynamic parameters showed that the adsorption process is endothermic and spontaneous.


RSC Advances ◽  
2016 ◽  
Vol 6 (47) ◽  
pp. 40818-40827 ◽  
Author(s):  
Zizhang Guo ◽  
Jian Zhang ◽  
Hai Liu

This study shows that oxalic acid (OA) and succinic acid (SA) were employed to modify Phragmites australis (PA)-based activated carbons (ACs) during phosphoric acid activation to improve Rhodamine B (RhB) removal from aqueous solutions.


Author(s):  
Vijayakumar Govindasamy ◽  
Renganathan Sahadevan ◽  
Sivanesan Subramanian ◽  
Dharmendira Kumar Mahendradas

Perlite was utilized as an adsorbent for the removal of malachite green from their aqueous solution. The effects of the initial dye concentration, contact time, adsorbent dose, pH, and temperature were studied for the adsorption of malachite green in batch mode. The dye adsorption equilibrium was rapidly attained after 40 min of contact time. Adsorbent was characterized by FTIR, XRD and SEM. The Langmuir and Freundlich isotherm described the adsorption data over the concentration range (20 – 100 mg/L). The rate parameters of the intra particle diffusion were calculated and compared to identify the adsorption mechanisms. The thermodynamic parameters such as entropy change, enthalpy change, and energy of adsorption were calculated to know the nature of adsorption. The negative values of energy of adsorption and the positive values of enthalpy change suggested that the adsorption process is spontaneous and exothermic. Kinetic studies showed that the adsorption process obeyed the pseudo first-order kinetic model.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Muhammad Khairud Dahri ◽  
Muhammad Raziq Rahimi Kooh ◽  
Linda B. L. Lim

The removal of toxic dye rhodamine B (RB) from aqueous solution was achieved by using Casuarina equisetifolia cone (CEC) as an adsorbent. Batch experiment method was used in order to investigate the effects of contact time, pH, temperature, ionic strength, and dye concentration on the adsorption process. Kinetics and isotherm theoretical models were applied on the experimental data and it was found that the pseudo-2nd-order kinetics and the Langmuir isotherm model best fitted into the data. The Langmuir maximum adsorption capacity for CEC was determined as 49.5 mg g−1. The adsorption of RB onto CEC is thermodynamically favourable, feasible, and endothermic in nature.


Sign in / Sign up

Export Citation Format

Share Document