scholarly journals Effect of Climate Change Associated Hazards on Agricultural Workers and Approaches for Assessing Heat Stress and Its Mitigation Strategies – Review of Some Research Significances

Author(s):  
Govinda Pal Thaneswer Patel ◽  
Trishita Banik
2022 ◽  
pp. 1256-1277
Author(s):  
Vishakha Shrimali ◽  
Nibedita Naha ◽  
Sukanta Mondal

Climate change is a global threat to livestock sector to so many species and ecosystem in different parts of the world. Climate change, heat stress, and nutritional stress are the major intriguing factors responsible for reduced fertility in farm animals in tropical countries. Heat and nutritional stresses affect the reproductive performance by decreasing the expression of estrous behavior, altering ovarian follicular development and hormonal profiles, compromising oocyte competence, and inhibiting embryonic development in livestock. Climate is changed by greenhouse gases that released into atmosphere through man-made activities. Livestock contribute 18% of the production of greenhouse gases itself and causes climate change including heat stress, which has direct and indirect impact on fertility of the animals as well as reduce milk production. Adaptation to climate change and lowering its negative effect by alteration of animal micro-environment using different essential technologies are the main mitigation strategies to recover heat stress damage in this respect.


Author(s):  
Cicero Z. de Lima ◽  
Jonathan Robert Buzan ◽  
Frances C. Moore ◽  
Uris Lantz C Baldos ◽  
Matthew Huber ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3127
Author(s):  
Amira A. Goma ◽  
Clive J. C. Phillips

Egypt is one of the hottest countries in the world, and extreme climate events are becoming more frequent, which is consistent with the warming of the planet. The impact of this warming on ecosystems is severe, including on livestock production systems. Under Egyptian conditions, livestock already suffer heat stress periods in summer. The predicted increases in temperature as result of climate change will affect livestock production by reducing growth and milk production because of appetite suppression and conception rate reductions and will increase animal welfare concerns. In severe cases, these effects can result in death. We review the heat stress effects on livestock behaviour, reproduction, and production in the context of predicted climate change for Egypt over the course of this century and offer alternative scenarios to achieve food security for a growing human population. As an example, we combine predictions for reduced milk production during heat stress and human population trajectories to predict that milk availability per person will decline from 61 kg/year in 2011 to 26 kg/year in 2064. Mitigation strategies are discussed and include the substitution of animal-based foods for plant-based foods and laboratory-grown animal products.


2020 ◽  
pp. 11-24
Author(s):  
Anaïs Machard ◽  
Simon Martinez ◽  
Emmanuel Bozonnet ◽  
Eleonora Lacedra ◽  
Christian Inard

It is now well-known that the frequency, intensity and duration of heatwaves will strongly increase along the XXIth century, which introduces the urban built environment resilience as a new paradigm. In Paris, the intense 2003 heatwave demonstrated that warm urban temperatures could result in serious adverse health issues. Temperatures were particularly elevated during nighttime, due to the urban heat island effect. Since air-conditioning has not penetrated yet in residential French buildings, studying the potential of combined mitigation strategies at the district and building scale to increase the neighbourhood and buildings resilience in strong urbanized areas under future heatwaves is a key subject matter. The climate change aspect is integrated through a future heatwave weather file, re-assembled from dynamically downscaled multi-year regional climate change projections from the EURO-CORDEX project. The new ecodistrict Clichy-Batignolles in central Paris is chosen as a case study, recognized as innovative for low-energy and environmental solutions. It is composed of high-rise residential and commercial buildings, large green areas, cool surfaces, and reduced anthropogenic sources. We used an Urban Canyon Model (Urban Weather Generator) to model the neighbourhood and different design configurations (building height and density, green and cool surfaces). The designs and measures were evaluated through a sensitivity analysis to analyse their potential to mitigate the urban local microclimate air temperature during the heatwaves. We quantified the neighbourhood resilience and found that the ecodistrict is exposed to a strong urban heat stress under the future intense heatwave. These results highlight how outdoor overheating assessment can be used to evaluate the district mitigation and adaptation strategies. This approach can be used for urban planning, while the modelled future urban heatwaves can be used as an input for building simulations and evaluate the resilience of the buildings to urban heat stress.


2021 ◽  
Vol 50 (Supplement_1) ◽  
Author(s):  
Matthew Borg ◽  
Peng Bi ◽  
Jianjun Xiang ◽  
Olga Anikeeva

Abstract Background The adverse effects of heat on workers’ health and work productivity are well documented. However, the resultant economic consequences and productivity loss are less understood. This review aims to summarize the retrospective and potential future economic burden of workplace heat exposure in the context of climate change. Methods Literature was searched from database inception to October 2020 using Embase, PubMed, and Scopus. Articles were limited to original human studies investigating costs from occupational heat stress in English. Results Twenty studies met the criteria. Eighteen studies estimated costs from heat-induced labor productivity loss. Predicted global costs from lost worktime, in US$, were 280 billion in 1995, 311 billion in 2010 (≈0.5% of GDP), 2.5 trillion in 2030 (>1% of GDP) and up to 4.0% of GDP by 2100, with additional expenses after considering reduced work efficiency. Three studies estimated heat-related healthcare expenses from occupational injuries with averaged annual costs (US$) exceeding 1 million in Spain, 1 million in Guangzhou, China and 250,000 in Adelaide, Australia. Low- and middle-income countries and countries with warmer climates had greater losses as a proportion of GDP. Greater costs per worker were observed in outdoor industries, amongst males, and workers aged 25 to 44 years. Conclusions The estimated global economic burden of occupational heat stress is substantial. Climate change adaptation and mitigation strategies should be implemented to likely minimize future costs. Further research exploring the relationship between occupational heat stress and related expenses from lost productivity, decreased work efficiency and healthcare, and costs stratified by demographic factors, is warranted. Key messages The estimated retrospective and future economic burden from occupational heat stress is large. Responding to climate change is crucial to minimize this burden. Analyzing heat-attributable occupational costs may guide the development of workplace heat management policies and practices as part of global warming strategies.


Author(s):  
Vishakha Shrimali ◽  
Nibedita Naha ◽  
Sukanta Mondal

Climate change is a global threat to livestock sector to so many species and ecosystem in different parts of the world. Climate change, heat stress, and nutritional stress are the major intriguing factors responsible for reduced fertility in farm animals in tropical countries. Heat and nutritional stresses affect the reproductive performance by decreasing the expression of estrous behavior, altering ovarian follicular development and hormonal profiles, compromising oocyte competence, and inhibiting embryonic development in livestock. Climate is changed by greenhouse gases that released into atmosphere through man-made activities. Livestock contribute 18% of the production of greenhouse gases itself and causes climate change including heat stress, which has direct and indirect impact on fertility of the animals as well as reduce milk production. Adaptation to climate change and lowering its negative effect by alteration of animal micro-environment using different essential technologies are the main mitigation strategies to recover heat stress damage in this respect.


Author(s):  
Sergei Soldatenko ◽  
Sergei Soldatenko ◽  
Genrikh Alekseev ◽  
Genrikh Alekseev ◽  
Alexander Danilov ◽  
...  

Every aspect of human operations faces a wide range of risks, some of which can cause serious consequences. By the start of 21st century, mankind has recognized a new class of risks posed by climate change. It is obvious, that the global climate is changing, and will continue to change, in ways that affect the planning and day to day operations of businesses, government agencies and other organizations and institutions. The manifestations of climate change include but not limited to rising sea levels, increasing temperature, flooding, melting polar sea ice, adverse weather events (e.g. heatwaves, drought, and storms) and a rise in related problems (e.g. health and environmental). Assessing and managing climate risks represent one of the most challenging issues of today and for the future. The purpose of the risk modeling system discussed in this paper is to provide a framework and methodology to quantify risks caused by climate change, to facilitate estimates of the impact of climate change on various spheres of human activities and to compare eventual adaptation and risk mitigation strategies. The system integrates both physical climate system and economic models together with knowledge-based subsystem, which can help support proactive risk management. System structure and its main components are considered. Special attention is paid to climate risk assessment, management and hedging in the Arctic coastal areas.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 619
Author(s):  
Sadeeka Layomi Jayasinghe ◽  
Lalit Kumar

Even though climate change is having an increasing impact on tea plants, systematic reviews on the impact of climate change on the tea system are scarce. This review was undertaken to assess and synthesize the knowledge around the impacts of current and future climate on yield, quality, and climate suitability for tea; the historical roots and the most influential papers on the aforementioned topics; and the key adaptation and mitigation strategies that are practiced in tea fields. Our findings show that a large number of studies have focused on the impact of climate change on tea quality, followed by tea yield, while a smaller number of studies have concentrated on climate suitability. Three pronounced reference peaks found in Reference Publication Year Spectroscopy (RYPS) represent the most significant papers associated with the yield, quality, and climate suitability for tea. Tea yield increases with elevated CO2 levels, but this increment could be substantially affected by an increasing temperature. Other climatic factors are uneven rainfall, extreme weather events, and climate-driven abiotic stressors. An altered climate presents both advantages and disadvantages for tea quality due to the uncertainty of the concentrations of biochemicals in tea leaves. Climate change creates losses, gains, and shifts of climate suitability for tea habitats. Further studies are required in order to fill the knowledge gaps identified through the present review, such as an investigation of the interaction between the tea plant and multiple environmental factors that mimic real-world conditions and then studies on its impact on the tea system, as well as the design of ensemble modeling approaches to predict climate suitability for tea. Finally, we outline multifaceted and evidence-based adaptive and mitigation strategies that can be implemented in tea fields to alleviate the undesirable impacts of climate change.


2021 ◽  
Vol 7 (3) ◽  
pp. 202
Author(s):  
Johannes Delgado-Ospina ◽  
Junior Bernardo Molina-Hernández ◽  
Clemencia Chaves-López ◽  
Gianfranco Romanazzi ◽  
Antonello Paparella

Background: The role of fungi in cocoa crops is mainly associated with plant diseases and contamination of harvest with unwanted metabolites such as mycotoxins that can reach the final consumer. However, in recent years there has been interest in discovering other existing interactions in the environment that may be beneficial, such as antagonism, commensalism, and the production of specific enzymes, among others. Scope and approach: This review summarizes the different fungi species involved in cocoa production and the cocoa supply chain. In particular, it examines the presence of fungal species during cultivation, harvest, fermentation, drying, and storage, emphasizing the factors that possibly influence their prevalence in the different stages of production and the health risks associated with the production of mycotoxins in the light of recent literature. Key findings and conclusion: Fungi associated with the cocoa production chain have many different roles. They have evolved in a varied range of ecosystems in close association with plants and various habitats, affecting nearly all the cocoa chain steps. Reports of the isolation of 60 genera of fungi were found, of which only 19 were involved in several stages. Although endophytic fungi can help control some diseases caused by pathogenic fungi, climate change, with increased rain and temperatures, together with intensified exchanges, can favour most of these fungal infections, and the presence of highly aggressive new fungal genotypes increasing the concern of mycotoxin production. For this reason, mitigation strategies need to be determined to prevent the spread of disease-causing fungi and preserve beneficial ones.


2021 ◽  
Vol 13 (6) ◽  
pp. 3170
Author(s):  
Avri Eitan

Evidence shows that global climate change is increasing over time, and requires the adoption of a variety of coping methods. As an alternative for conventional electricity systems, renewable energies are considered to be an important policy tool for reducing greenhouse gas emissions, and therefore, they play an important role in climate change mitigation strategies. Renewable energies, however, may also play a crucial role in climate change adaptation strategies because they can reduce the vulnerability of energy systems to extreme events. The paper examines whether policy-makers in Israel tend to focus on mitigation strategies or on adaptation strategies in renewable energy policy discourse. The results indicate that despite Israel’s minor impact on global greenhouse gas emissions, policy-makers focus more on promoting renewable energies as a climate change mitigation strategy rather than an adaptation strategy. These findings shed light on the important role of international influence—which tends to emphasize mitigation over adaptation—in motivating the domestic policy discourse on renewable energy as a coping method with climate change.


Sign in / Sign up

Export Citation Format

Share Document