scholarly journals Green Synthesis of Ag NPs Mediated by Using Aqueous Leaf Extract of Coriandrum sativum

Author(s):  
K. Kalpana K. Anandaraj

Nanoparticles have attracted scientific responsiveness due to their fascinating properties, commercial and biotechnological applications advantageous over their bulk counterparts This is principally due to their small size and, subsequently, the remarkable surface area of NPs. Presently, advances in the synthesis, stabilization and production of AgNPs have adopted a new generation of commercial products and intensified scientific investigation within the nanotechnology field. In the present study, Ag NPs are synthesized in the presence of the aqueous leaf extract of Coriandrum sativum. The biosynthesized nanoparticles were characterized by UV– Vis spectra, FT-IR, XRD, and SEM analysis. Further, the antibacterial activity of the biosynthesized nanoparticles was tested against the selected bacterial isolates. Ag NPs exhibited maximum antagonistic activity towards Pseudomonas aeruginosa.

2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110121
Author(s):  
Kashan Khan ◽  
Saleem Javed

A wide variety of methods have synthesized silver nanoparticles (Ag-NPs) in the recent past; however, biological methods have attracted much attention over the traditional chemical synthesis method due to being non-hazardous and eco-friendly. Here, a detailed and systemic study was performed to compare two different synthesis routes for Ag-NPs, that is, the chemical and the biological; their possible outcomes have also been described. Ag-NPs were synthesized chemically (cAg-NPs) using a chemical reductant and biologically (bAg-NPs) by using aqueous leaf extract of Azadirachta indica (neem). The synthesized nanoparticles were characterized using UV-visible spectrophotometry, FT-IR, EDX, and TEM. The average particle sizes (APS) of cAg-NPs were found to be 8 and 13 nm and of bAg-NPs to be 19 and 43 nm under different AgNO3 concentrations. The antimicrobial tests of differently sized NPs were performed against Escherichia coli (Gram −ve) and S taphylococcus aureus (Gram +ve). The results revealed that bAg-NPs of APS 43 nm were highly antimicrobial against both the tested bacterial stains followed by cAg-NPs of 8 nm. We found the effect of cAg-NPs to be size-dependent, whereas bAg-NPs showed a more significant antimicrobial effect than cAg-NPs.


Author(s):  
Sruthi Radhakrishnan

Green route for the synthesis of nanoparticles has become more acceptable than the other chemical as well as biological route. In the present study, silver nanoparticle is synthesized using ethanolic extract of Psidium guajava leaves. Further the synthesized silver nanoparticles were characterized by UV-Visible Spec, FT-IR, X-Ray Diffraction FESEM and E-DAX. The results of FT-IR provided evidence of the involvement of phytochemicals present in the leaf extract in the reduction of silver nitrate to silver nanoparticles. XRD confirmed the crystalline structure as well as shape of the synthesized nanoparticle as face-centred cubic. E-DAX profiling helped in determining the presence of elemental silver. The size of the nanoparticle procured by SEM analysis was found to be approximately 30-50 nm in size. Thus, the findings of this study showed that the plant assisted method for silver nanoparticle synthesis is more effective and further application level studies can shed lights on their use in healing of various human ailments.   


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Savy Panamkuttiyiel Minal ◽  
Soam Prakash

AbstractThe current study provides novel results on the synthesis of bimetallic nanoparticles (BNPs) of gold and palladium (Au–Pd) with an eco-friendly and non-toxic aqueous leaf extract of plant Citrus limon. The BNPs were characterized and toxicity bioassay was examined on the larvae of the pathogen vectors such as Anopheles stephensi and Aedes aegypti mosquitoes. The predation efficiency test was evaluated on the invertebrate non-target organisms such as natural predatory nymphs of dragonfly and damselfly. The results of material characterization using UV VIS spectroscopy confirmed the synthesis of Au–Pd BNPs with the appearance of the SPR bands. FT-IR spectroscopy indicates the presence of functional groups containing high amounts of nitro compounds and amines on the surface of BNPs. TEM result shows the presence of spherical polydisperse Au–Pd BNPs in the sample. The XRD pattern displayed the semi-crystalline nature and the changes in the hydrodynamic size and surface potential was determined for the sample at 0 h, 24 h, 48 h, and 72 h of synthesis through DLS and ZP analysis. Au–Pd BNPs Bioassay provided the effective lethal concentrations (LC50) against the I–IV instar larvae of An. stephensi and Ae. aegypti after 24 h, 48 h, and 72 h of exposure. The LC50 obtained from the larvicidal bioassay was used to test its effect on the predation efficiency of the selected nymphs which showed increased predation from 40 to 48 h of exposure as compared to the negative control. Hereby, we conclude that Au–Pd BNPs bioassay shows toxic mosquito larvicidal activity at the selected concentration with no lethal effect on the predation efficiency of the selected stage of the predatory non-target aquatic invertebrate insects.


2017 ◽  
Vol 57 (2) ◽  
pp. 194-200 ◽  
Author(s):  
Abdul A. Buhroo ◽  
Gousul Nisa ◽  
Syed Asrafuzzaman ◽  
Ram Prasad ◽  
Razia Rasheed ◽  
...  

AbstractThe present exploration is focused on the bio-fabrication of silver nanoparticles (Ag NPs) usingTrichodesma indicumaqueous leaf extract as a reducing agent. The synthesized Ag NPs were productively characterized by UV-vis spectroscopy, XRD, and TEM studies. The photosynthesis of Ag NPs was done at room temperature for 24 h and at 60°C. The green synthesis of spherical-shaped Ag NPs bio-fabricated fromT. indicumwith a face centred cubic structure showed average particle sizes of 20–50 nm, which is inconsistent with the particle size calculated by the XRD Scherer equation and TEM analysis. We further explored the larvicidal efficacy of biosynthesized Ag NPs with leaf extracts ofT. indicumagainstMythimna separata. The results showed that Ag NPs (20–50 nm) ofT. indicumpossess good larvicidal activity againstM. separatawith an LC50of 500 ppm. Thus, we can advocate that Ag NPs of 20–50 nm size extracted fromT. indicummay be considered in the pest management programme ofM. separatain future.


Biomedicine ◽  
2020 ◽  
Vol 39 (4) ◽  
pp. 544-549
Author(s):  
G. K. Pratap ◽  
Manjula Shantaram

Introduction and Aim: The silver nanoparticles have attained a special place in the area of nanotechnology because of their different biological applications. Fabrication of nanoparticles using green synthesis is  done because of its wide applications in different fields such as biomedical, medicine, agriculture and food engineering. This study is to develop an easy and eco-friendly method for the synthesis of Ag-NPs using leaf extracts of the medicinal plant. Materials and Methods: The medicinal plants are rich sources of various medicinal properties. Olea dioica Roxb., leaf extract was used to investigate the effects of Ag-NPs having antibacterial activity and antioxidant capacity.  The plant leaf extract contains flavonoids, alkaloids, saponins, and phenolic compounds which acts as reducing and stabilizing agents. The green synthesized silver nanoparticles were characterized by various techniques like UV- visible spectrophotometer, FTIR spectroscopy, and SEM analysis. Results: The synthesis of sliver nanoparticles from plant source, and analysis of nano particles by UV-Vis spectra, SEM and FTIR. The biological evaluations of Ag-NPs indicated an excellent inhibitory efficacy, antioxidant and antimicrobial activity for their future applications in medicine. Conclusion: The synthesized silver nanoparticles exhibited potent antioxidant and antimicrobial activities against Gram-positive and Gram-negative bacteria. The silver (Ag-NPs) nanoparticles synthesized by the pot green synthesis method proves its potential use in various medical applications. Keywords: Silver nanoparticles; Medicinal plants; Ag-NPs; Olea dioica Roxb.,


2018 ◽  
Vol 4 (5) ◽  
pp. 527-532
Author(s):  
Diksha B. Lade ◽  
Dayanand P. Gogle ◽  
Bipin D. Lade

The main purpose of the experiment is to use green synthesis method for silver nanoparticles (SNP) fabrication using phytochemical and functional groups inherent in aqueous leaf extract of Ocimum sanctum and Ocimum basilicum for formulation of polyethylene glycol (PEG)/ Glycerine film. The SNP synthesis reaction is performed under sun condition and change in colour from light brown to dark brown was the initial indication, observed for nanoparticles synthesis. The 95 mL of 0.001 M AgNO3 is mixed with 5 mL of leaf extract and reaction performed under Sun light at alkaline pH 8 was found efficient to produced stable NP. The synthesized SNP are mixed with (10%, 50%, 100%, 150%, 200% and 250%), polyethylene glycol (PEG):glycerine (G) in 1:1 ratio to form a film. The UV-spectroscopic analysis confirms absorption at 420-430 nm for synthesized SNP. The FTIR characterization determines alkynes (terminal), 1�, 2� amines, amides, nitriles, alkynes, alkyl halides functional group from O. sanctum (OS) leaf extract and aldehydes, alkynes (terminal), alkyne, alkene, from O. basilicum (OB) leaf extract responsible for reducing and capping silver nitrate to form nanoparticles. The SEM analysis verify that the O. sanctum based nanoparticles are spherical in shape although O. basilicum based nanoparticles have bright contrast coral reef like morphology. The average zeta potential of silver nanoparticles was found to be 27.74 mV and 23.50 mV that are embedded in Ocimum sanctum-SNP/PEG and Ocimum basilicum-SNP/PEG films. Also, the average diameters of SNP in Ocimum sanctum-SNP/PEG and in Ocimum basilicum-SNP/PEG was found to be 463.2 nm and 43.0 nm. These Sun light mediated SNP shows antimicrobial activity against E. coli and S. aureous pathogens.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Arun Kumar Khajuria ◽  
Fariha Chowdhary ◽  
Narendra Singh Bisht

In the present study, an inexpensive green route has been demonstrated for the formation of ZnO nanoparticles by biogenic method using aqueous leaf extract of Justicia adhatoda which acts as a reducing and stabilizing agent. The synthesized ZnO nanoparticles were preliminarily characterized by UV-VIS followed by using different analytical techniques such as X-ray diffraction (XRD) and fourier transform infrared spectroscopy (FT-IR). The XRD pattern confirmed that, the synthesized ZnO nanoparticles are of hexagonal wurtzite structure with average calculated grain size less than 9.40 nm. The FT-IR spectra indicated the presence of hydroxyl groups, carboxylic acids which may be responsible for biochemical reaction. The clear zone of inhibition against both gram- positive and gram-negative bacteria confirmed the antimicrobial potential of synthesized ZnO nanoparticles.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381 ◽  
Author(s):  
S Sarshar ◽  
MR Asadi Karam ◽  
M Habibi ◽  
S Bouzari ◽  
X Qin ◽  
...  

Author(s):  
Rahmiana Zein ◽  
Mutia Khuratul Aini ◽  
Hermansyah Aziz

Biosorpsi zat warna Rhodamine B menggunakan cangkang Pensi (Corbicula moltkiana) telah dikaji. Percobaan dilakukan dengan system batch guna memperoleh kondisi optimum biosorspi zat warna. Kapasitas biosorpsi zat warna pada pH 2 adalah 0.9958 mg/g, dengan konsentrasi larutan mula-mula 150 mg/L waktu kontak 105 menit, massa biosorben 0.1 g, ukuran partikel 32 µm dan temperature pengeringan biosorben pada 75oC. Model isotherm Langmuir menunjukkan bahwa proses penyerapan berlangsung secara kimia dan biosorpsi homogeny dari adsorbat (Rhodamine B) pada permukaan biosorben membentuk lapisan tunggal dengan nilai R2 0.9966. Analisis XRF menunjukkan bahwa penurunan kadar unsur logam pada cangkang Pensi membuktikan bahwa proses biosorpsi berlangsung dengan pertukaran kation. Hasil analisis spektrum FT-IR membuktikan adanya interaksi antaramolekul Rhodamin B dengan gugus fungsi pada cangkang Pensi. Analisis dengan SEM memperlihatkan bahwa pori-pori cangkang Pensi telah terisi penuh oleh molekul Rhodamin B. Kondisi optimum biosorpsi telah diaplikasikan pada limbah kerupuk merah dengan kapasitas penyerapan sebesar 0,2835 mg/g.   The biosorption of Rhodamine B dyes by Pensi (Corbicula moltkiana) shell has been investigated. The experiment was conducted in batch sistem in order to obtain the optimum conditions of dye biosorption. Biosorption capacity of dye was 0.9958 mg/g at pH 2, initial concentration 150 mg/L, contact time 105 minutes, biosorbent mass 0.1 gram, particle size 32 µ m and biosorbent drying temperature was at 75oC. The Langmuir Isotherm model showed chemisorption and homogeneous biosorption process of adsorbates onto the biosorbent surface formed monolayer dye molecules on the biosorbent surface with R2 value was 0.9966. XRF analysis showed that reduction of metals unsure quantity of pensi shell indicated biosorption process was occupied through cationic exchange. The result of FTIR spectra analysis indicated an interaction between Rhodamin B molecules and functional group of pensi shell. SEM analysis showed that the pensi shell pores were completely filled by Rhodamine B molecules. The optimum condition of biosorption has been aplicated in red chips wastewater industry with biosorption capacity was 0.2835 mg/g.


2019 ◽  
Vol 35 (1) ◽  
pp. 145-153
Author(s):  
O. Uyi, ◽  
I.G. Amolo ◽  
A.D. Adetimehin

Several studies have demonstrated the biological efficacy of leaf, stem and root powders or extracts of Chromolaena odorata (L.) King and Robinson against insect pests but those that are focused on the biological efficacy of aqueous leaf extracts against Macrotermes species are scanty. Current management of termites with synthetic insecticides is being discouraged due to human and environmental hazards. Therefore, the insecticidal effectiveness of aqueous leaf extract C. odorata against Macrotermes species was investigated. Five concentrations (0, 2.5, 5.0, 7.5 and 10.0% (w/v)) of the aqueous extract of C. odorata plant were evaluated for repellency and toxicity on the worker caste of Macrotermes species following standard procedures. The filter paper impregnation technique was used for the bioassay. Percentage repellency was monitored for 30 minutes and mortality recorded at 12, 24 and 36 hours post exposure. The leaf extract of C. odorata significantly repelled 95% of Macrotermes species at the highest concentration of 10% (w/v) after 30 minutes post treatment exposure. Mortality of Macrotermes species was independent of treatment concentration, but dependent on duration of exposure. All treatment concentrations of aqueous leaf extract of C. odorata caused significant mortality against Macrotermes species ranging between 94% and 98% compared to the control; indicating very great potential for adoption and use in the management of Macrotermes species.


Sign in / Sign up

Export Citation Format

Share Document