scholarly journals Unique volatile chemical profiles produced by indigenous and commercial strains of Saccharomyces uvarum and Saccharomyces cerevisiae during laboratory-scale Chardonnay fermentations

OENO One ◽  
2021 ◽  
Vol 55 (3) ◽  
pp. 101-122
Author(s):  
Sarah M. Lyons ◽  
Sydney C. Morgan ◽  
Stephanie McCann ◽  
Samantha Sanderson ◽  
Brianne L. Newman ◽  
...  

Each wine growing region hosts unique communities of indigenous yeast species, which may enter fermentation and contribute to the final flavour profile of wines. One of these species, Saccharomyces uvarum, is typically described as a cryotolerant yeast that produces relatively high levels of glycerol and rose-scented volatile compounds as compared with Saccharomyces cerevisiae, the main yeast in winemaking. Comparisons of fermentative and chemical properties between S. uvarum and S. cerevisiae at the species level are relatively common; however, a paucity of information has been collected on the potential variability present among S. uvarum strains. The objective of this study was to compare the fermentation kinetics and production of volatile compounds between indigenous and commercial Saccharomyces strains at different temperatures. We compared laboratory-scale fermentation of Chardonnay juice at 15 °C and 25 °C for 11 Saccharomyces yeast strains (six indigenous S. uvarum, one commercial S. uvarum, one indigenous S. cerevisiae and three commercial S. cerevisiae). Fermentation kinetics and the production of volatile compounds known to affect the organoleptic properties of wine were determined. The indigenous S. uvarum strains showed comparable kinetics to commercially sourced strains at both temperatures. Volatile compound production among the strains was more variable at 15 °C and resulted in unique chemical profiles at 15 °C as compared with 25 °C. Indigenous S. uvarum strains produced relatively high levels of 2-phenylethyl acetate and 2-phenylethanol, whereas these compounds were found at much lower levels in fermentations conducted by commercial strains of both S. cerevisiae and S. uvarum. Production of glycerol by indigenous S. uvarum strains did not differ from commercial strains in this study. Our findings demonstrate that indigenous strains of S. uvarum show functional variation among themselves. However, when compared with commercial S. cerevisiae and S. uvarum strains, they have comparable fermentation kinetics but unique volatile compound profiles, especially at low fermentation temperatures.

Author(s):  
Ceyda Dadalı

In this study, it was aimed to characterize some physical and chemical properties, volatile compounds and sensory properties of chaste honey produced in Aydın, Çanakkale, İzmir and Muğla provinces. A total of 16 different volatile compounds (4 aldehydes, 3 furans, 2 alcohol, 2 sulphur compounds, 2 terpenes, 1 alkane, 1 benzenic compound and 1 ketone) were identified in the evaluated chaste honeys. It was determined that common volatile compounds of chaste honeys were dimethyl sulphide, octane, nonanal, 2-furancarboxaldehyde, 2-ethyl-1-hexanol, 1- (2-furanyl) -ethanone, benzaldehyde, 5-methyl-2-furancarboxaldehyde, and benzenacetaldehyde. Benzenacetaldehyde was the most abundant volatile compound in all chaste honeys, followed by benzaldehyde and 2-furancarboxaldehyde. As a result of the sensory evaluation, floral, fruity, caramel-like, bitter almond, fermented, animal-like, spicy, waxy, and woody aroma characters, sweet and sour taste characters and astringent mouthfeeling were detected in chaste honeys. The floral, fruity, caramel-like, sweet, and sour characters were intensely perceived in all samples.


BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 4373-4387
Author(s):  
Minjay Chung ◽  
Sensung Cheng ◽  
Chunya Lin ◽  
Shangtzen Chang

Volatile compounds are released when bamboo culms are used as eating utensils. Volatile compounds of Dendrocalamus latiflorus, Phyllostachys pubescens, and P. makinoi culms were extracted using solid-phase microextraction (SPME). The bamboo culms were steamed or baked at different temperatures (100 °C and 230 °C) and durations (5 min, 30 min, and 60 min). Gas chromatography-mass spectrometry (GC-MS) analyses showed that, regardless of heating method and duration, P. makinoi culms comprised the most species of volatile compounds, with sesquiterpenes being the major compounds. Steaming and baking D. latiflorus culms at 100 °C for 30 min yielded more volatile compounds than baking at 230 °C. Benzenoids were the chief compounds in heated D. latiflorus and P. pubescens culms, with phenylacetaldehyde being the dominant constituent. Phenylacetaldehyde has fragrances of herb, flower, and oil. Moreover, the major volatile compound cyclosativene, which gives a terpene-like aroma, was obtained when P. makinoi culms were heated for different durations. After baking at 230 °C for 30 min, the major volatile compound released from P. makinoi culm was α-muurolene (41.19%), which produces a woody aroma. After continuous baking for 60 min, DT 1, a kind of diterpene compound, increased remarkably in relative content, while the content of α-muurolene decreased notably.


2018 ◽  
Vol 18 (2) ◽  
pp. 115-131
Author(s):  
Liang Heng-Yu ◽  
Su Ning ◽  
Guo Kun ◽  
Wang Yuan ◽  
Yang De-Yu

Five Saccharomyces cerevisiae strains (Chinese indigenous yeasts SC5, WC5, SC8, CC17 and commercial starter F15) were inoculated into Cabernet sauvignon grape must and fermented at pilot scale. For the first time, combination of 1H NMR, HS-SPME/GC-MS and HPLC-DAD-ESI-MS/MS metabonomic profiling techniques was performed to analyze the global chemical fingerprints of sampled wines at the end of alcoholic and malolactic fermentation respectively, then 13 non-volatile flavor compounds, 52 volatile organic aromas and 43 polyphenolic molecules were identified and determined correspondently. All principal component analysis (PCA) of two fermentation stages based on the analytical results of 1H NMR, HS-SPME/GC-MS and HPLC-DAD-ESI-MS/MS divided these strains into three clusters: (1) SC5 and SC8, (2) WC5 and F15 and (3) CC17. The wine fermented by indigenous yeast, CC17, showed a very unique chemical profile, such as low pH and high color intensity, reduced amino acids (including proline) and the lowest total higher alcohols levels, most of the fixed acids, glycerol, ethyl esters and anthocyanins concentrations. The statistical results indicate that CC17 strain possesses very special anabolism and catabolism abilities on such substances in grape juice and has potentiality to produce characteristic wines with high qualities.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 344
Author(s):  
Gilson Celso Albuquerque Chagas Junior ◽  
Nelson Rosa Ferreira ◽  
Eloisa Helena de Aguiar Andrade ◽  
Lidiane Diniz do Nascimento ◽  
Francilia Campos de Siqueira ◽  
...  

This study aimed to identify the volatile compounds in the fermented and dried cocoa beans conducted with three distinct inoculants of yeast species due to their high fermentative capacity: Saccharomyces cerevisiae, Pichia kudriavzevii, the mixture in equal proportions 1:1 of both species, and a control fermentation (with no inoculum application). Three starter cultures of yeasts, previously isolated and identified in cocoa fermentation in the municipality of Tomé-Açu, Pará state, Brazil. The seeds with pulp were removed manually and placed in wooden boxes for the fermentation process that lasted from 6 to 7 days. On the last day of fermentation, the almonds were packaged properly and placed to dry (36 °C), followed by preparation for the analysis of volatile compounds by GC-MS technique. In addition to the control fermentation, a high capacity for the formation of desirable compounds in chocolate by the inoculants with P. kudriavzevii was observed, which was confirmed through multivariate analyses, classifying these almonds with the highest content of aldehydes, esters, ketones and alcohols and low concentration of off-flavours. We conclude that the addition of mixed culture starter can be an excellent alternative for cocoa producers, suggesting obtaining cocoa beans with desirable characteristics for chocolate production, as well as creating a product identity for the producing region.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 414
Author(s):  
Victoria Purdy ◽  
Biniam Kebede ◽  
Ron Beatson ◽  
Kerry Templeton ◽  
Patrick Silcock ◽  
...  

Hop aroma characteristics originate from hop essential oils, which have complex chemical profiles that remain poorly understood, particularly for New Zealand hops. The aim of this study was to determine volatile compounds that distinguish New Zealand hop cultivars. Untargeted fingerprinting methods based on headspace gas chromatography mass spectrometry (GC-MS) were used to analyse nine hop cultivars. A total of 61 volatile compounds were identified as compounds that differentiated the commercial hop varieties using advanced chemometrics and feature selection techniques. Similarities in volatile composition were found between Wakatu, Wai-iti™ and Kohatu®, which are rich in alcohols. Another grouping was found between Waimea™ and Nelson Sauvin™, where ketones and esters were commonly found. Rakau™ was distinct from the other eight cultivars, distinguished by 2-methylbutyl 3-methylbutanoate and methanethiol hexanoate. Riwaka™ contained the greatest number of discriminating volatile compounds when compared to other cultivars, which was dominated by terpenoids, such as geranyl 2-methylbutanoate, perillene and D-limonene. The chemical fingerprinting approach successfully identified volatile compounds that had not been previously found in New Zealand hop cultivars and that discriminated the commercial cultivars. The data obtained in the present study further extend the knowledge of New Zealand hops and will help facilitate targeted breeding.


2018 ◽  
Vol 55 (10) ◽  
pp. 4119-4130 ◽  
Author(s):  
Xue Lin ◽  
Qingke Wang ◽  
Xiaoping Hu ◽  
Wuyang Wu ◽  
Yexin Zhang ◽  
...  

1934 ◽  
Vol 30 (2) ◽  
pp. 216-224
Author(s):  
P. C. Ho

Owing to its physical and chemical properties being greatly different from those of any of the liquids which have hitherto been used in the Wilson cloud chamber, mercury has been used in the experiments described in this paper and the condensation phenomena of its vapour at different temperatures observed. Before constructing the apparatus it was considered necessary to get from theoretical considerations some idea about the magnitude of the critical supersaturation for mercury vapour in equilibrium with a drop carrying unit charge. Assuming that J. J. Thomson's formula.where s is the supersaturation of mercury vapour in equilibrium with a drop of mercury of radius a, charge e, density σ and surface tension T, the value of which is assumed here to be independent of the radius of the drop, K the specific inductive capacity of the dielectric surrounding the drop, and R the gas constant for one gramme of weight, all at temperature θ, can be applied to the present problem, this critical supersaturation sm is given by the formula


OENO One ◽  
1999 ◽  
Vol 33 (4) ◽  
pp. 195
Author(s):  
Claudio Delfini ◽  
Chiara Cocito ◽  
M. Bonino

<p style="text-align: justify;">There are evidences that a grape must of a non aromatic vine, not having perfume and revealing by gaschromatographie only some classes of compounds common to the musts of all the vine varieties, can originate a pool of characterizing fragrant substances after contact with the yeast during fermentation. Therefore, despite the scarce scientific knowledge available on biochemical mechanisms involved in <em>Saccharomyces cerevisiae</em> in the formation of a wine aromatic pattern, it can be likely hypothesized that the yeast could be the biological motor of this aromatic transformation. The yeast can act on the compounds of the must with many periplasmic enzymes (estérases, glycosidases, lyases, lipases, proteases, peptidases, pectolytiques) and several are the scientific contributions underlining the existence of an interaction between the yeast and the vine variety in the formation of wine aromatic characteristics. Besides the individual contribution of substances sensorially active, the yeast would contribute to the transformation of unknown varietal aromatic precursors that are in the grape skins and/or musts. The biochemical, genetic and physiological aspects of this transformation still have to be understood. At the end, we have to answer some important questions such as the mutual role that grape and/or yeast enzymes have during and soon after crushing in the liberation of the varietal precursors and in the conversion of these in fragrant compounds.</p>


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Lijun Nan ◽  
Liyuan Liu ◽  
Yashan Li ◽  
Jing Huang ◽  
Yanjun Wang ◽  
...  

A total of 55 volatiles including esters (29, 52.73%), alcohols (10, 18.18%), acids (3, 5.45%), alkanes (8, 14.55%), and other components (5, 9.09%) were evaluated in five regions. Total concentrations were 0.05–222.23 mg/L, which covered the highest esters (222.23 mg/L) and alcohols (120.65 mg/L) in Turpan, acid (0.53 mg/L) in Shihezi, and alkanes (1.43 mg/L) and others (3.10 mg/L) in the Ili River valley. It proved that numbers and concentrations of volatile compounds, including common ingredients of variety, were closely linked to ecological characteristics of a region. Esters and alcohols were the major ingredients in Xinjiang Cabernet Sauvignon wine. Additionally, appellation could affect performance of concentration, ODE, and OTH, especially for the same flavor substance by fermentation, aging, and even formation and transformation in wines. Therefore, three conditions for formation of flavors were successively appellations, metabolism and fermentation, and and appropriate altering according to technology and their decisive role in wine quality. Each volatile compound had its own flavor, the combination of which complicated the flavor. The unique materials in the region were grounded for the development of products with corresponding flavors by producing substrate for fermentation. When choosing a wine you enjoy, the right appellation should be considered first.


Author(s):  
Narendra Narain ◽  
Anderson Santos Fontes ◽  
Maria Terezinha Santos Leite-Neta ◽  
Patricia Nogueira Matos ◽  
Hannah Caroline Santos Araújo ◽  
...  

This study was aimed to obtain and characterize the dried powder of cajá-umbu (Spondias spp) fruit pulp obtained by spray-drying and lyophilization. Spray-drying of the pulp was done at different temperatures. Analysis of bioactive compounds and volatile compounds was performed. The total phenolic compounds content was high in the dried powder obtained at the temperature of 140 °C. The volatiles analysis of dried powders revealed  that the powder dried at  140°C contained a larger number of compounds. The cajá-umbu powder showed that it is a better alternative for storage and conservation since it retained the majority of volatile compounds. Keywords: Cajá-umbu, volatile compounds, gas chromatography, mass spectrometry.


Sign in / Sign up

Export Citation Format

Share Document