scholarly journals Dengue Outbreak is a Global Recurrent Crisis: Review of the Literature

Author(s):  
Yusha Araf ◽  
Md. Asad Ullah ◽  
Nairita Ahsan Faruqui ◽  
Sadrina Afrin Mowna ◽  
Durdana Hossain Prium ◽  
...  

Purpose: This review features a generalized overview of dengue outbreaks, dengue pathogenesis, symptoms, immune response, diagnosis methods and preventive measures which facilitates the better understanding of the global expansion and concerns relating to the disease. Recent Findings: A recent study showed that natural killer cells of the infected person become activated soon after the infection which may help in treatment and vaccine development. A research team has also produced synthetically engineered mosquitoes that can prevent the transmission and dissemination of the dengue virus by the activation of an antibody. Furthermore, a mutation in the protein envelope of the dengue virus leads to variation in shapes, developing resistance towards the vaccine. Summary: The increasing number of reported cases indicated the worldwide distribution of the mosquito vectors, which was further facilitated by the growth in the shipping and commerce industries. The immune system, through activation of the innate and adaptive immune responses, facilitates the recruitment of an array of leukocytes which help neutralize the virus. However, the 4 different viral serotypes increases the risk of a life-threatening secondary infection due to the varying serotypes. Apart from the laboratory standard PRNT method, several other dengue detection methods such as ELISA, RT-LAMP and several optical, microfluidic and electrochemical methods have been developed. Since Dengvaxia® (CYD-TDV) has its own set of drawbacks and limitations, several companies have been investing for the production of more potential vaccines that are currently in trial.

Author(s):  
Yusha Araf ◽  
Md. Asad Ullah ◽  
Nairita Ahsan Faruqui ◽  
Sadrina Afrin Mowna ◽  
Durdana Hossain Prium ◽  
...  

Purpose: This review highlights the global scenario of dengue outbreaks, dengue pathogenesis, symptoms, immune response, diagnosis methods and preventive measures which facilitates the better understanding of the global expansion and concerns relating to the disease. Recent Findings: A recent study showed that natural killer cells of the infected person become activated soon after the infection which may help in treatment and vaccine development. A research team has also produced synthetically engineered mosquitoes that can prevent the transmission and dissemination of the dengue virus by the activation of an antibody. Furthermore, a mutation in the protein envelope of the dengue virus leads to variation in shapes, developing resistance towards the vaccine. Summary: The mosquito vectors marked their worldwide distribution through an increasing number of reported cases which was further facilitated by the growth in the shipping and commerce industries. The immune system, through activation of the innate and adaptive immune responses, facilitates the recruitment of an array of leukocytes which help neutralize the virus. Apart from the laboratory standard PRNT method, several other dengue detection methods such as ELISA, RT-LAMP and several optical, microfluidic and electrochemical methods have been developed. The existence of the 4 different viral serotypes makes the secondary infection life-threatening and also leads to difficulties in vaccine development. Since Dengvaxia® (CYD-TDV) has its own set of drawbacks and limitations, several companies have been investing for the production of more potential vaccines that are currently in trial.


Author(s):  
Zuzana Strizova ◽  
Jitka Smetanova ◽  
Jirina Bartunkova ◽  
Tomas Milota

The number of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected patients keeps rising in most of the European countries despite the pandemic precaution measures. The current antiviral and anti-inflammatory therapeutic approaches are only supportive, have limited efficacy, and the prevention in reducing the transmission of SARS-CoV-2 virus is the best hope for public health. It is presumed that an effective vaccination against SARS-CoV-2 infection could mobilize the innate and adaptive immune responses and provide a protection against severe forms of coronavirus disease 2019 (COVID-19) disease. As the race for the effective and safe vaccine has begun, different strategies were introduced. To date, viral vector-based vaccines, genetic vaccines, attenuated vaccines, and protein-based vaccines are the major vaccine types tested in the clinical trials. Over 80 clinical trials have been initiated; however, only 18 vaccines have reached the clinical phase II/III or III, and 4 vaccine candidates are under consideration or have been approved for the use so far. In addition, the protective effect of the off-target vaccines, such as <i>Bacillus</i> Calmette-Guérin and measles vaccine, is being explored in randomized prospective clinical trials with SARS-CoV-2-infected patients. In this review, we discuss the most promising anti-COVID-19 vaccine clinical trials and different vaccination strategies in order to provide more clarity into the ongoing clinical trials.


2006 ◽  
Vol 14 (2) ◽  
pp. 182-189 ◽  
Author(s):  
David H. Holman ◽  
Danher Wang ◽  
Kanakatte Raviprakash ◽  
Nicholas U. Raja ◽  
Min Luo ◽  
...  

ABSTRACT Dengue virus infections can cause hemorrhagic fever, shock, encephalitis, and even death. Worldwide, approximately 2.5 billion people live in dengue-infested regions with about 100 million new cases each year, although many of these infections are believed to be silent. There are four antigenically distinct serotypes of dengue virus; thus, immunity from one serotype will not cross-protect from infection with the other three. The difficulties that hamper vaccine development include requirements of the natural conformation of the envelope glycoprotein to induce neutralizing immune responses and the necessity of presenting antigens of all four serotypes. Currently, the only way to meet these requirements is to use a mixture of four serotypes of live attenuated dengue viruses, but safety remains a major problem. In this study, we have developed the basis for a tetravalent dengue vaccine using a novel complex adenovirus platform that is capable of expressing multiple antigens de novo. This dengue vaccine is constructed as a pair of vectors that each expresses the premembrane and envelope genes of two different dengue virus serotypes. Upon vaccination, the vaccine expressed high levels of the dengue virus antigens in cells to mimic a natural infection and induced both humoral and cellular immune responses against multiple serotypes of dengue virus in an animal model. Further analyses show the humoral responses were indeed neutralizing against all four serotypes. Our studies demonstrate the concept of mimicking infections to induce immune responses by synthesizing dengue virus membrane antigens de novo and the feasibility of developing an effective tetravalent dengue vaccine by vector-mediated expression of glycoproteins of the four serotypes.


Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 2109
Author(s):  
Samuel T. Pasco ◽  
Juan Anguita

Vaccine design traditionally focuses on inducing adaptive immune responses against a sole target pathogen. Considering that many microbes evade innate immune mechanisms to initiate infection, and in light of the discovery of epigenetically mediated innate immune training, the paradigm of vaccine design has the potential to change. The Bacillus Calmette-Guérin (BCG) vaccine induces some level of protection against Mycobacterium tuberculosis (Mtb) while stimulating trained immunity that correlates with lower mortality and increased protection against unrelated pathogens. This review will explore BCG-induced trained immunity, including the required pathways to establish this phenotype. Additionally, potential methods to improve or expand BCG trained immunity effects through alternative vaccine delivery and formulation methods will be discussed. Finally, advances in new anti-Mtb vaccines, other antimicrobial uses for BCG, and “innate memory-based vaccines” will be examined.


2020 ◽  
Vol 51 (1) ◽  
Author(s):  
Byeonghwi Lim ◽  
Sangwook Kim ◽  
Kyu-Sang Lim ◽  
Chang-Gi Jeong ◽  
Seung-Chai Kim ◽  
...  

Abstract Porcine reproductive and respiratory syndrome virus (PRRSV) infection is the most important viral disease causing severe economic losses in the swine industry. However, mechanisms underlying gene expression control in immunity-responsible tissues at different time points during PRRSV infection are poorly understood. We constructed an integrated gene co-expression network and identified tissue- and time-dependent biological mechanisms of PRRSV infection through bioinformatics analysis using three tissues (lungs, bronchial lymph nodes [BLNs], and tonsils) via RNA-Seq. Three groups with specific expression patterns (i.e., the 3-dpi, lung, and BLN groups) were discovered. The 3 dpi-specific group showed antiviral and innate-immune signalling similar to the case for influenza A infection. Moreover, we observed adaptive immune responses in the lung-specific group based on various cytokines, while the BLN-specific group showed down-regulated AMPK signalling related to viral replication. Our study may provide comprehensive insights into PRRSV infection, as well as useful information for vaccine development.


2019 ◽  
Vol 7 (10) ◽  
pp. 402
Author(s):  
Titus Abiola Olukitibi ◽  
Zhujun Ao ◽  
Mona Mahmoudi ◽  
Gary A. Kobinger ◽  
Xiaojian Yao

In the prevention of epidemic and pandemic viral infection, the use of the antiviral vaccine has been the most successful biotechnological and biomedical approach. In recent times, vaccine development studies have focused on recruiting and targeting immunogens to dendritic cells (DCs) and macrophages to induce innate and adaptive immune responses. Interestingly, Ebola virus (EBOV) glycoprotein (GP) has a strong binding affinity with DCs and macrophages. Shreds of evidence have also shown that the interaction between EBOV GP with DCs and macrophages leads to massive recruitment of DCs and macrophages capable of regulating innate and adaptive immune responses. Therefore, studies for the development of vaccine can utilize the affinity between EBOV GP and DCs/macrophages as a novel immunological approach to induce both innate and acquired immune responses. In this review, we will discuss the unique features of EBOV GP to target the DC, and its potential to elicit strong immune responses while targeting DCs/macrophages. This review hopes to suggest and stimulate thoughts of developing a stronger and effective DC-targeting vaccine for diverse virus infection using EBOV GP.


2018 ◽  
Vol 92 (7) ◽  
Author(s):  
Bobby Brooke Herrera ◽  
Wen-Yang Tsai ◽  
Charlotte A. Chang ◽  
Donald J. Hamel ◽  
Wei-Kung Wang ◽  
...  

ABSTRACT Recent studies on the role of T cells in Zika virus (ZIKV) infection have shown that T cell responses to Asian ZIKV infection are important for protection, and that previous dengue virus (DENV) exposure amplifies the protective T cell response to Asian ZIKV. Human T cell responses to African ZIKV infection, however, remain unexplored. Here, we utilized the modified anthrax toxin delivery system to develop a flavivirus enzyme-linked immunosorbent spot (ELISPOT) assay. Using human ZIKV and DENV samples from Senegal, West Africa, our results demonstrate specific and cross-reactive T cell responses to nonstructural protein 3 (NS3). Specifically, we found that T cell responses to NS3 protease are ZIKV and DENV specific, but responses to NS3 helicase are cross-reactive. Sequential sample analyses revealed immune responses sustained many years after infection. These results have important implications for African ZIKV/DENV vaccine development, as well as for potential flavivirus diagnostics based on T cell responses. IMPORTANCE The recent Zika virus (ZIKV) epidemic in Latin America and the associated congenital microcephaly and Guillain-Barré syndrome have raised questions as to why we have not recognized these distinct clinical diseases in Africa. The human immunologic response to ZIKV and related flaviviruses in Africa represents a research gap that may shed light on the mechanisms contributing to protection. The goal of our study was to develop an inexpensive assay to detect and characterize the T cell response to African ZIKV and DENV. Our data show long-term specific and cross-reactive human immune responses against African ZIKV and DENV, suggesting the usefulness of a diagnostic based on the T cell response. Additionally, we show that prior flavivirus exposure influences the magnitude of the T cell response. The identification of immune responses to African ZIKV and DENV is of relevance to vaccine development.


mSphere ◽  
2017 ◽  
Vol 2 (6) ◽  
Author(s):  
Quazim A. Alayo ◽  
Nicholas M. Provine ◽  
Pablo Penaloza-MacMaster

ABSTRACT The unprecedented challenges of developing effective vaccines against intracellular pathogens such as HIV, malaria, and tuberculosis have resulted in more rational approaches to vaccine development. Apart from the recent advances in the design and selection of improved epitopes and adjuvants, there are also ongoing efforts to optimize delivery platforms. The unprecedented challenges of developing effective vaccines against intracellular pathogens such as HIV, malaria, and tuberculosis have resulted in more rational approaches to vaccine development. Apart from the recent advances in the design and selection of improved epitopes and adjuvants, there are also ongoing efforts to optimize delivery platforms. Viral vectors are the best-characterized delivery tools because of their intrinsic adjuvant capability, unique cellular tropism, and ability to trigger robust adaptive immune responses. However, a known limitation of viral vectors is preexisting immunity, and ongoing efforts are aimed at developing novel vector platforms with lower seroprevalence. It is also becoming increasingly clear that different vectors, even those derived from phylogenetically similar viruses, can elicit substantially distinct immune responses, in terms of quantity, quality, and location, which can ultimately affect immune protection. This review provides a summary of the status of viral vector development for HIV vaccines, with a particular focus on novel viral vectors and the types of adaptive immune responses that they induce.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Solomon K Langat ◽  
Fredrick Lunyagi Eyase ◽  
Irina Maljkovic Berry ◽  
Albert Nyunja ◽  
Wallace Bulimo ◽  
...  

Abstract Dengue fever (DF) is an arboviral disease caused by dengue virus serotypes 1-4 (DENV 1-4). Globally, DF incidence and disease burden have increased in the recent past. Initially implicated in a 1982 outbreak, DENV-2 recently reemerged in Kenya causing outbreaks between 2011 and 2014 and more recently 2017–8. The origin and the evolutionary patterns that may explain the epidemiological expansion and increasing impact of DENV-2 in Kenya remain poorly understood. Using whole-genome sequencing, samples collected during the 2011–4 and 2017–8 dengue outbreaks were analyzed. Additional DENV-2 genomes were downloaded and pooled together with the fourteen genomes generated in this study. Bioinformatic methods were used to analyze phylogenetic relationships and evolutionary patterns of DENV-2 causing outbreaks in Kenya. The findings from this study have shown the first evidence of circulation of two different Cosmopolitan genotype lineages of DENV-2; Cosmopolitan-I (C-I) and Cosmopolitan-II (C-II), in Kenya. Our results put the origin location of C-I lineage in India in 2011, and C-II lineage in Burkina Faso between 1979 and 2013. C-I lineage was the most isolated during recent outbreaks, thus showing the contribution of this newly emerged strain to the increased DENV epidemics in the region. Our findings, backed by evidence of recent local epidemics that have been associated with C-I in Kenya and C-II in Burkina Faso, add to the growing evidence of expanding circulation and the impact of multiple strains of DENV in the region as well as globally. Thus, continued surveillance efforts on DENV activity and its evolutionary trends in the region, would contribute toward effective control and the current vaccine development efforts.


Sign in / Sign up

Export Citation Format

Share Document