scholarly journals Build Strategy and Impact Strength of SLM Produced Maraging Steel (1.2709)

Author(s):  
Anders E. W. Jarfors ◽  
Akash Chikke Gowda Hosapalya Shashidhar ◽  
Hrushi Kailash Yepur ◽  
Jacob Steggo ◽  
Nils-Eric Andersson ◽  
...  

The current paper aims to study the impact properties of additively manufactured Maraging steel (1.2709) using laser powder bed fusion (PBF-L) processing. The specimens were manufactured using 3Dsystems ProX 300 equipment under constant specific power input, or Andrew Number. The interactions between the build strategy and parameters, such as Hatch spacing and Scan speed was, and the impact strength and fracture were investigated. The Impact energy anisotropy was also investigated parallel and perpendicular to the build direction. Instrumented impact testing was performed, and the fractography supported that the fusion zone geometry dictated the fracture behaviour. The influence from gaseous elements such as Nitrogen, Oxygen and Hydrogen was found insignificant at the levels found in the printed material.

Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 51
Author(s):  
Anders E. W. Jarfors ◽  
Akash Chikke Gowda Hosapalya Shashidhar ◽  
Hrushi Kailash Yepur ◽  
Jacob Steggo ◽  
Nils-Eric Andersson ◽  
...  

The current paper aimed to study the impact properties of additively manufactured maraging steel (1.2709) using laser powder bed fusion (PBF-L) processing. The specimens were fabricated using 3D Systems ProX 300 equipment under constant specific power input, or Andrew number. The interactions between the build strategy and parameters such as hatch spacing and scan speed was, and the impact strength and fracture were investigated. The impact energy anisotropy was also investigated in parallel and perpendicular to the build direction. Instrumented impact testing was performed, and the fractography supported that the fusion zone geometry dictated the fracture behavior. The influence from gaseous elements such as nitrogen, oxygen, and hydrogen was found insignificant at the levels found in the printed material.


Author(s):  
Diego Augusto de Moraes ◽  
Aleksander Czekanski

Selective Laser Melting (SLM) process is a Powder Bed Fusion (PBF) technique, which has shown significantly growth in the recent years. The demand for this process is justified by the versatility and ease in manufacturing the parts from 3D models as well for the increased complexity of engineered parts generated from topology or shape optimization. Automotive, aerospace, medical and aviation industries are taking great advantage of this process due the unique geometry characteristics found in the components. To enhance the benefits of SLM, a vital task is to analyze the laser power input impact on the temperature distribution through the powder bed, important for posterior residual stresses analysis. The Finite Element Method proposed in this study is a transient thermal model, able to predict temperature distribution through different sections of the powder bed when performing a single track of the laser scanning. Furthermore, the impact of the laser power input is carried out utilizing SS 304L, a low cost Stainless Steel alloy that can be employed in the SLM process, in order to determine the influence on the temperature distribution along the different cross sections.


2012 ◽  
Vol 455-456 ◽  
pp. 815-819
Author(s):  
Qian Qiao Chen ◽  
Qin Zhong ◽  
Li Qi ◽  
Qun Qun Cheng ◽  
Lu Wang ◽  
...  

Using the three-layer impellers with big size diameter in an unbaffled elliptic bottom stirred tank,the gas holdup (ε) was studied in the systems of air-polyether polyol (PPG). The results indicate that the gas holdup in the air-PPG system is higher, it increase with the superficial gas phase velocity (Vs) and specific power input (Pm) increase, and decrease as the temperature increase. The influence is severely when the temperature is below 100°C, and is weak above 100 °C.The conclusions give reference for choosing the operation parameter and designing and scale-up of PPG polymerization reactor.


2008 ◽  
Vol 22 (09n11) ◽  
pp. 1050-1055
Author(s):  
TADAHARU ADACHI ◽  
HIROTAKA GOTO ◽  
WAKAKO ARAKI ◽  
TAKAHIRO OMORI ◽  
NORIYASU KAWAMURA ◽  
...  

A pendulum-impact testing machine was developed to measure the impact strength of ball-grid-array (BGA) solder joints between an electronic package and a circuit board. Ball solders were connected to daisy-chain between a dummy electronic package and a circuit board. The upper side of the package was directly bonded to a load cell. The rear side of the circuit board was also bonded to an aluminum alloy block fixed on a base. A pendulum made of aluminum alloy was collided into the load cell to apply tensile impact to the solder joints through the load cell. The history of the impact load could be controlled by raising the angle of the pendulum. The fracture of a BGA solder joint was detected by measuring the resistance of the daisy-chain circuit on the board. Therefore, the impact strengths of the solder joints at electrical disconnection and mechanical breaking of all joints could be determined. The experimental results showed that this method is useful for measuring the impact strength of BGA solder joints.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1642
Author(s):  
Ionut Sebastian Vintila ◽  
Sorin Draghici ◽  
Horia Alexandru Petrescu ◽  
Alexandru Paraschiv ◽  
Mihaela Raluca Condruz ◽  
...  

The present paper is focused on evaluating the most suitable dispersion method in the epoxy matrix of two self-healing systems containing dicyclopentadiene (DCPD) and 5-ethylidene-2-norbornene (ENB) monomers encapsulated in a urea-formaldehyde (UF) shell, prior to integration, fabrication and impact testing of specimens. Both microstructural analysis and three-point bending tests were performed to evaluate and assess the optimum dispersion method. It was found that ultrasonication damages the microcapsules of both healing systems, thus magnetic stirring was used for the dispersion of both healing systems in the epoxy matrix. Using magnetic dispersion, 5%, 7%, 10%, 12% and 15% volumes of microcapsules were embedded in glass fibre composites. Some of the samples were subjected to thermal cycling between −20 °C and +100 °C for 8 h, to evaluate the behaviour of both healing systems after temperature variation. Impact test results showed that the mechanical behaviour decreases with increasing microcapsule volume, while for specimens subjected to thermal cycling, the impact strength increases with microcapsule volume up to 10%, after which a severe drop in impact strength follows. Retesting after 48 h shows a major drop in mechanical properties in specimens containing 15% MUF-ENB microcapsules, up to total penetration of the specimen.


2021 ◽  
Vol 6 (2) ◽  
pp. 106
Author(s):  
Mara Gustina ◽  
Widjijono Widjijono ◽  
Endang Wahyuningtyas

Non-dental glass fiber is one of the materials that can be used to increase the impact strength of a acrylic resin base plate, containing a similar composition to that of dental e-glass fiber. Orientation and positions of fiber affect the reinforcement effectiveness. This research aimed to examine the effect of the orientation of non-dental glass fiber in the compression position on the impact strength of an acrylic resin base plate. The research was conducted on 16 acrylic resin plates with fiber (65 mm x 10 mm x 2.5 mm) addition. The samples were divided into 4 groups (combination of different woven orientation unidirectional, bidirectional woven in the compression position, and control). The material used in this study was heat-cured acrylic resin QC-20 brand, non-dental glass fiber (without any brand). Impact strength was tested using an impact testing machine. The data obtained were analyzed using one-way ANOVA test and LSD (p<0.05). In this research the impact strength of the base plate with the addition of fiber increased 8.54 ± 2.21; 13.21 ± 2.34; 16.81 ± 2.80 kJ/m2 compared to that of the control group, i.e. 4.98 ± 1.05 kJ/m2. One-way ANOVA test showed a significant effect (p<0.05) of the fiber orientation variations on the compression position. This research concluded that the addition of nondental e-glass fiber (composed of SiO252.56-56.88%), diameter 17.12–20.03 µm) in the compression zone increases theimpact strength of acrylic resin base plate. Fibers with unidirectional orientationprovides the highest increase in the impact strength of acrylic resin base plate.


Author(s):  
Darshan G. Gaidhankar ◽  
Mohammad Omid Naqshbandi ◽  
M. S. Kulkarni

The capability to absorb energy, often called as toughness, is of importance in actual service conditions of mesh reinforced composites, when they may be subjected to static, dynamic and fatigue loads. Toughness evaluated under impact loads is the impact strength. The toughness of materials are determined by two methods, (i) by measuring deformation under impact load, (ii) by determining energy adsorption capacity of materials under impact load. Several methods were used to investigate to determining toughness of materials. In this research work, drop weight impact test were used. The present experimental work describes testing of flat ferrocement panels with different number of layer steel mesh as well as enhancement of panels with steel fiber. The main purpose of this study is to investigate the effect of using different number of wire mesh layer on the flexural strength and impact strength and also effect of varying thickness of panels on the energy absorption of ferrocement panels. The experimental work includes preparation of ferrocement panels reinforced with welded square mesh, woven square mesh with and without hooked steel fibers The ferrocement panels of different sizes were prepared and tested for flexural strength under the two point loading as well as drop weight for impact testing. It is expected that as the mesh layers will be increased the energy absorption capacity of the panel should be increased and the also its effect should be seen for addition of hooked steel fibers.


Sign in / Sign up

Export Citation Format

Share Document