scholarly journals Development of Urban Eco-Sustainable Index for Upscaling Water Security at Catchment Level in Langat River, Malaysia

Author(s):  
Rahmah Elfithri ◽  
Mazlin Bin Mokhtar ◽  
Mohd Ekhwan Toriman ◽  
Marina Zainal Abidin ◽  
Fang Yenn Teo

The Urban Eco-Sustainable Index for Upscaling Water Security at Catchment Level in Langat River, Malaysia has developed by using the Modified Watershed Sustainability Index or MicroWSI (MWSI), which was based on the Participation, Design and Management Components. The study has successfully applied spatial and social dimensions on ecohydrology of the selected Langat River reach for stormwater management, natural ecosystems health and quality of life. The planning and public participation aspects of the study have evaluated the surrounding neighborhood area of Langat. The conceptual design of rehabilitation works implementation related to Urban Stormwater Management Manual for Malaysia (MSMA) Stormwater Management Ecohydrology (SME) within the study area has been developed with four components of MSMA-SME to be implemented in the study area i.e Bioretention System, Porous Pavement System, Constructed Wetland and Slope Protection Works. These components were proposed to be applied in the development of Langat Riverfront Community Park (LRCP) which has taken into account the components of Design, Management and Participation of Community and Stakeholders in Langat River Basin, Malaysia. This study analyzed the MWSI for the Upscaling of MSMA Ecohydrology at Catchment Level of Langat River and has found the medium level of sustainability for the level of participation, proposed design, and management. Thus, there is a need to increase the level of readiness in the community and stakeholder participation in the Langat River towards sustainability of river conservation and rehabilitation programmes in this basin.

1995 ◽  
Vol 32 (1) ◽  
pp. 33-39
Author(s):  
E. Alfakih ◽  
S. Barraud ◽  
Y. Azzout ◽  
B. Chocat

The implementation of alternative techniques in urban stormwater management is a difficult problem in terms of choice, design, construction, and operating. We applied a quality management approach to try and have a better understanding of these techniques. The quality of an alternative technique in urban stormwater management is defined; the factors that lead to failures were identified and analysed. In order to reduce these factors, tools were developed, and measures that allow the achievement of the necessary standard of quality are suggested. In this article, all the illustrations refer to the porous pavement technique.


2014 ◽  
Vol 369 (1639) ◽  
pp. 20120286 ◽  
Author(s):  
Ferdinando Villa ◽  
Brian Voigt ◽  
Jon D. Erickson

As societal demand for food, water and other life-sustaining resources grows, the science of ecosystem services (ES) is seen as a promising tool to improve our understanding, and ultimately the management, of increasingly uncertain supplies of critical goods provided or supported by natural ecosystems. This promise, however, is tempered by a relatively primitive understanding of the complex systems supporting ES, which as a result are often quantified as static resources rather than as the dynamic expression of human–natural systems. This article attempts to pinpoint the minimum level of detail that ES science needs to achieve in order to usefully inform the debate on environmental securities, and discusses both the state of the art and recent methodological developments in ES in this light. We briefly review the field of ES accounting methods and list some desiderata that we deem necessary, reachable and relevant to address environmental securities through an improved science of ES. We then discuss a methodological innovation that, while only addressing these needs partially, can improve our understanding of ES dynamics in data-scarce situations. The methodology is illustrated and discussed through an application related to water security in the semi-arid landscape of the Great Ruaha river of Tanzania.


2021 ◽  
Author(s):  
Anna Ukkola ◽  
Martin De Kauwe ◽  
Michael Roderick ◽  
Gab Abramowitz ◽  
Andy Pitman

<p>Understanding how climate change affects droughts guides adaptation planning in agriculture, water security, and ecosystem management. Earlier climate projections have highlighted high uncertainty in future drought projections, hindering effective planning. We use the latest CMIP6 projections and find more robust projections of meteorological drought compared to mean precipitation. We find coherent projected changes in seasonal drought duration and frequency (robust over >45% of the global land area), despite a lack of agreement across models in projected changes in mean precipitation (24% of the land area). Future drought changes are larger and more consistent in CMIP6 compared to CMIP5. We find regionalised increases and decreases in drought duration and frequency that are driven by changes in both precipitation mean and variability. Conversely, drought intensity increases over most regions but is not simulated well historically by the climate models. These more robust projections of meteorological drought in CMIP6 provide clearer direction for water resource planning and the identification of agricultural and natural ecosystems at risk.</p>


2019 ◽  
Author(s):  
Yangzi Qiu ◽  
Abdellah Ichiba ◽  
Igor Da Silva Rocha Paz ◽  
Feihu Chen ◽  
Pierre-Antoine Versini ◽  
...  

Abstract. Currently, Low Impact Development (LID) and Nature-Based Solutions (NBS) are widely accepted as sustainable approaches for urban stormwater management. However, their complex impacts depend on the urban environmental context as well as the small-scale heterogeneity, which need to be assessed by using the fully distributed hydrological model and high resolution data at small scale. In this paper, a case study (Guyancourt), located in the South-West of Paris, was explored. Three sets of high resolution X-band radar data were applied to investigate the impact of variability of spatial distribution of rainfall. High resolution geographic information has been processed to identify the suitable areas that can be covered by the LID/NBS practices, porous pavement, green roof, and rain garden. These individual practices, as well as the combination of the three, were implemented as scenarios in a fully distributed and physically-based Multi-Hydro model, which takes into consideration the variability of the whole catchment at 10 m scale. The performance of LID/NBS scenarios are analysed with two indicators (total runoff volume and peak discharge reduction), with regards to the hydrological response of the original catchment (baseline scenario). Results are analysed with considering the coupling effect of the variability of spatial distributions of rainfall and land uses. The performance of rain garden scenario is better than scenario of green roof and porous pavement. The most efficient scenario is the combination of the three practices that can reduce total runoff volume up to 51 % and peak discharge up to 53 % in the whole catchment, and the maximum values of the two indictors in three sub-catchments reach to 60 % and 61 % respectively. The results give credence that Multi-Hydro is a promising model for evaluating and quantifying the spatial variability of hydrological responses of LID/NBS practices, because of considering the heterogeneity of spatial distributions of precipitation and land uses. Potentially, it can guide the decision-making process of the design of LID/NBS practices in urban planning.


2007 ◽  
Vol 2 (1) ◽  
pp. 37-52 ◽  
Author(s):  
Andrea Bradford ◽  
Chris Denich

Traditional stormwater management approaches that rely on rapid conveyance and end-of-pipe detention have not adequately mitigated the effects of urbanization on water resources and the aquatic and human communities that rely upon them. Low-impact development techniques that can support a shift to management of the post-development hydrologic cycle and runoff volumes offer better opportunities to prevent stream erosion and protect groundwater recharge, characteristics of the flow regime and water quality. The application and design of four techniques—porous pavement, bioretention cells, green roofs and rainwater harvesting— in the management of the post-development water balance are presented.


Land ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 399
Author(s):  
Walter Musakwa ◽  
Trynos Gumbo ◽  
Gaynor Paradza ◽  
Ephraim Mpofu ◽  
Nesisa Analisa Nyathi ◽  
...  

National parks play an important role in maintaining natural ecosystems which are important sources of income and livelihood sustenance. Most national parks in Southern Africa are managed by their states. Before 2007, Gonarezhou National Park was managed by the Zimbabwe Parks Management and Wildlife Authority, which faced challenges in maintaining its biodiversity, community relations and infrastructure. However, in 2017 the Frankfurt Zoological Society and the Zimbabwe Parks Management and Wildlife Authority formed an innovative partnership under the Gonarezhou Conservation Trust (GCT). This study examines the relationship between GCT management, Gonarezhou National Park stakeholders and communities as well as the impact of the relationship on biodiversity and ecosystems. The study also highlights challenges faced and lessons learned in managing Gonarezhou as a protected area. To obtain the information, key informant interviews, Landsat satellite imagery, secondary data from previous studies and government sources were utilized. The results indicate that the concerted efforts of the Gonarezhou Conservation Trust to manage the park are starting to bear fruit in improving biodiversity conservation, ecosystem management and engaging communities. However, challenges such as governance obstacles, problematic stakeholder management, maintaining trust in community relations, ensuring sustainability, managing the adverse impacts of climate change and human-wildlife conflicts must still be navigated to ensure the park’s sustainable management. Notwithstanding challenges, we argue that a partnership arrangement such as the Gonarezhou Conservation Trust is a desirable model that can be applied in national parks in Zimbabwe and Africa for better biodiversity management and tourism.


Water Policy ◽  
2003 ◽  
Vol 5 (3) ◽  
pp. 213-236 ◽  
Author(s):  
J. C. Luijten ◽  
E. B. Knapp ◽  
S. I. Sanz ◽  
J. W. Jones

Water security for those living in poverty is a concern for a broad range of policy makers. Identifying appropriate policy options, however, means coping with complexity and uncertainty inherent in natural and human systems. This paper demonstrates how geographical information systems and simulation modeling can facilitate scenario analysis of water availability and water security. The result is policy development with a strong human context that can empower stakeholders in water resources negotiations and the design of a science-based, community-supported water resources management plans. We applied these tools to two hillside watersheds in Honduras and Colombia to generate basic information about the “state of water resources”, and how they may change over space and time, for the present situation and under alternatives futures. Stakeholder participation in creating and analyzing scenarios is a critical part of the overall policy development methodological framework, so that what might otherwise be only lines on a graph is put into more concrete human terms. The analyses showed that, among others, stream water availability and the location of streams strongly vary throughout the year and over space; that different parts of the watersheds do not equally contribute to stream water; that inequalities exist in household accessibility to streams; and that dams could help supply sufficient irrigation water under alternative development scenarios without endangering water supply to downstream communities. These results are helpful for better understanding landscape processes at a watershed scale, for identifying desired future conditions and negotiating tradeoffs that are required to reach them, and for supporting water policy development.


Author(s):  
G. Young ◽  
S. Demuth ◽  
A. Mishra ◽  
C. Cudennec

Abstract. This paper provides an introduction to the concepts of water security including not only the risks to human wellbeing posed by floods and droughts, but also the threats of inadequate supply of water in both quantity and quality for food production, human health, energy and industrial production, and for the natural ecosystems on which life depends. The overall setting is one of constant change in all aspects of Earth systems. Hydrological systems (processes and regimes) are changing, resulting from varying and changing precipitation and energy inputs, changes in surface covers, mining of groundwater resources, and storage and diversions by dams and infrastructures. Changes in social, political and economic conditions include population and demographic shifts, political realignments, changes in financial systems and in trade patterns. There is an urgent need to address hydrological and social changes simultaneously and in combination rather than as separate entities, and thus the need to develop the approach of ‘socio-hydrology’. All aspects of water security, including the responses of both UNESCO and the International Association of Hydrological Sciences (IAHS) to the concepts of socio-hydrology, are examined in detailed papers within the volume titled Hydrological Sciences and Water Security: Past, Present and Future.


2018 ◽  
Vol 5 (1) ◽  
pp. 25
Author(s):  
Yulie Rahayu Fitrianingsih

In recent decades, the utilization of mangrove ecosystem continues to increase, not only in terms of others uses, but also in terms of the utilization of mangrove trees, both traditional and commercial. Encroachment and conversion of mangrove land into farms, residential, industrial, and so on, as well as logging by people for various puposes, rsulting in disturbed mangrove ecosystems and natural habitats damaged. The role and function of mangroves is essential and accompained by increased use of destructive activity is accompanied by a decrease in mangrove area has been properly made efforts to improve the conservation and maintenance of the mangrove ecosystem. One of the efforts to improve the conversation and rehabilitation of mangrove ecosystems through the study of ecotourism.. Several location on the East Coast of Aceh Province have been succesfully rehabilitated, for example, in District of Muara Dua, Lhokseumawe. This study aims to asses the potential and feasibility of mangrove ecosystem for the development of ecotourism as a conservation of natural ecosystems and to plan management strategies in the area of mangrove ecotourism should be developed that is viewed from several aspects (mangrove vegetation, wildlife, facilities and infrastructure, stakeholder participation, institutional and legislation. The method used was a descriptive exploratory method with percentage and SWOT analysis. The results of the study indicated that the mangrove ecosystem in generally more prevalent types of Rhizophora mucronata, R. apiculata and Avicennia marina. Stakeholder participation in the mangrove rehabilitation program consisting of government. Keywords : Mangrove, Rahabilitation, Participation, Ecotourism, Strategy Management.


Sign in / Sign up

Export Citation Format

Share Document