scholarly journals β-Ga2O3 Used as a Saturable Absorber to Realize Passively Q-Switched Laser Output

Author(s):  
Baizhong Li ◽  
Qiudi Chen ◽  
Peixiong Zhang ◽  
Ruifeng Tian ◽  
Lu Zhang ◽  
...  

β-Ga2O3 crystal have attracted great attentions in the fields of photonics and photoelectronics because of its ultra wide-band gap and high thermal conductivity. Here, pure β-Ga2O3 crystal was successfully grown by optical floating zone (OFZ) method, and used as saturable absorbers to realize a passively Q-switched all-solid-state 1μm laser for the first time. By placing the as-grown β-Ga2O3 crystal into the resonator of Nd:GYAP solid-state laser, a Q-switched pulses at the center wavelength of 1080.4 nm are generated under a output coupling of 10%. The maximum output power is 191.5 mW while the shortest pulse width is 606.54 ns, and the maximum repetition frequency is 344.06 kHz. The maximum pulse energy and peak power are 0.567 μJ and 0.93 W, respectively. Our experimental results show that β-Ga2O3 crystal has great potential in the development of all-solid-state 1μm pulsed laser.

Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1501
Author(s):  
Baizhong Li ◽  
Qiudi Chen ◽  
Peixiong Zhang ◽  
Ruifeng Tian ◽  
Lu Zhang ◽  
...  

β-Ga2O3 crystals have attracted great attention in the fields of photonics and photoelectronics because of their ultrawide band gap and high thermal conductivity. Here, a pure β-Ga2O3 crystal was successfully grown by the optical floating zone (OFZ) method, and was used as a saturable absorber to realize a passively Q-switched all-solid-state 1 μm laser for the first time. By placing the as-grown β-Ga2O3 crystal into the resonator of the Nd:GYAP solid-state laser, Q-switched pulses at the center wavelength of 1080.4 nm are generated under a output coupling of 10%. The maximum output power is 191.5 mW, while the shortest pulse width is 606.54 ns, and the maximum repetition frequency is 344.06 kHz. The maximum pulse energy and peak power are 0.567 μJ and 0.93 W, respectively. Our experimental results show that the β-Ga2O3 crystal has great potential in the development of an all-solid-state 1 μm pulsed laser.


Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1200 ◽  
Author(s):  
Taijin Wang ◽  
Yonggang Wang ◽  
Jiang Wang ◽  
Jing Bai ◽  
Guangying Li ◽  
...  

In this work, a Tungsten disulfide (WS2) reflective saturable absorber (SA) fabricated using the Langmuir–Blodgett technique was used in a solid state Nd:YVO4 laser operating at 1.34 µm. A Q-switched laser was constructed. The shortest pulse width was 409 ns with the repetition rate of 159 kHz, and the maximum output power was 338 mW. To the best of our knowledge, it is the first time that short laser pulses have been generated in a solid state laser at 1.34 µm using a reflective WS2 SA fabricated by the Langmuir–Blodgett method.


Laser Physics ◽  
2021 ◽  
Vol 32 (2) ◽  
pp. 025801
Author(s):  
Xiangrui Liu ◽  
Zhuang Li ◽  
Chengkun Shi ◽  
Bo Xiao ◽  
Run Fang ◽  
...  

Abstract We demonstrated 22 W LD-pumped high-power continuous-wave (CW) deep red laser operations at 718.5 and 720.8 nm based on an a-cut Pr3+:YLF crystal. The output power of both polarized directions reached the watt-level without output power saturation. A single wavelength laser operated at 720.8 nm in the π-polarized direction was achieved, with a high output power of 4.5 W and high slope efficiency of approximately 41.5%. To the best of our knowledge, under LD-pumped conditions, the laser output power and slope efficiency are the highest at 721 nm. By using a compact optical glass plate as an intracavity etalon, we suppressed the π-polarized 720.8 nm laser emission. And σ-polarized single-wavelength laser emission at 718.5 nm was achieved, with a maximum output power of 1.45 W and a slope efficiency of approximately 17.8%. This is the first time that we have achieved the σ-polarized laser emission at 718.5 nm generated by Pr3+:YLF lasers.


2020 ◽  
Vol 44 (22) ◽  
pp. 9238-9247
Author(s):  
Xin Ji ◽  
Yong Guo ◽  
Shugui Hua ◽  
Huiyan Li ◽  
Sunchen Zhang

In this paper, the sensitization photodegradation of single and mixed dyes by wide band gap boron nitride (BN, 3.94 eV) under visible light irradiation has been investigated for the first time.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Hong Yang ◽  
He Wang ◽  
Dingyue Cao ◽  
Dangmin Sun ◽  
Xiaobao Ju

During the course of solar module encapsulation, the output power of crystalline silicon solar module is less than the sum of the maximum output power of the constituents because of power loss. So it is very important to investigate the power loss caused by encapsulation materials and module production process. In this paper, the power loss of crystalline silicon solar module is investigated by experiments systematically for the first time. It is found that the power loss is mainly caused by the resistance of ribbon and mismatch of solar cells; the total power loss is as high as 3.93% for solar module composed of 72 cells (125 mm × 125 mm) connected in series. Analyzing and reducing the power losses are beneficial to optimizing encapsulation process for the solar module. The results presented in this study give out a direction to decreasing power loss and optimizing encapsulation process of crystalline silicon solar module.


Nanophotonics ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1889-1906 ◽  
Author(s):  
Jason M. Smith ◽  
Simon A. Meynell ◽  
Ania C. Bleszynski Jayich ◽  
Jan Meijer

AbstractEffective methods to generate colour centres in diamond and other wide band-gap materials are essential to the realisation of solid state quantum technologies based on such systems. Such methods have been the subject of intensive research effort in recent years. In this review, we bring together the various techniques used in the generation and positioning of colour centres in diamond: ion implantation, delta-doping, electron irradiation, laser writing and thermal annealing. We assess the roles and merits of each of these techniques in the formation of colour centres for different quantum technologies and consider future combinations of the techniques to meet the requirements of the most demanding applications.


2009 ◽  
Vol 23 (06n07) ◽  
pp. 1541-1547 ◽  
Author(s):  
SHIBIN SUN ◽  
YIMIN ZHAO ◽  
YONGDE XIA ◽  
ZENGDA ZOU ◽  
GUANGHUI MIN ◽  
...  

Taking the wide band gap one-dimensional (1-D) tungsten oxide nanowires as an example, we here demonstrate systematically the physical characteristics of thermally processed nanowires at temperatures ranging from 400°C to 1000°C, for the first time. Accompanied by a significant drop of specific surface area from 151 m2/g for the as-prepared nanowires to 109 m2/g and 66 m2/g subject to annealing at 400°C and 450°C, dramatically morphology evolution and phase transformation have also been observed. The nanostructured bundles became straighter, larger in diameters and shorter in length, and eventually became irregular particles with size up to 5 µm. The Brunauer-Emmett-Tettler (BET) result suggests that 400°C can be considered as a top temperature limit in nanodevice design where high surface area is important, e.g. in gas sensors. A protocol for thermally processing of these bundled tungsten nanowires has been established.


2014 ◽  
Vol 1 ◽  
Author(s):  
Faiz Rahman

ABSTRACTLight-emitting diodes (LEDs) made from wide band gap semiconductors, such as gallium nitride, are undergoing rapid development. Solid-state lighting with these LEDs is transforming patterns of energy usage and lifestyle throughout the world.With solid-state lighting gradually taking over from incandescent and fluorescent lighting, light-emitting diodes (LEDs) are very much the focus of research nowadays. This compact review takes a look at LEDs for lighting applications made from wide band gap semiconductors. A very brief history of electric lighting is included for completeness, followed by a description of blue-emitting LEDs that serve as pump sources for all ‘white’ LEDs. This is followed by a discussion on techniques to extract more light from the confines of LED chips through surface patterning. The thermal management of LEDs is perhaps the most important consideration in designing and using LED-based luminaires. This topic is discussed with regard to recent studies on LED reliability. The very promising development of gallium nitride-on-silicon LEDs is examined next followed by a discussion on phosphors for color conversion in LEDs. LED lighting has positively influenced both upscale and downscale illumination markets worldwide. Its societal impact is examined, with the review concluding with a look at efforts to produce LEDs from zinc oxide – a material that holds much promise for the future of solid-state lighting.


1996 ◽  
Vol 423 ◽  
Author(s):  
A. V. Dmitriev ◽  
A. L. Oruzheinikov

AbstractThe radiative recombination rates have been calculated for the first time in the wide band gap wurtzite semiconductors GaN, InN and AIN and their solid solutions GaxAl1−xN and InxAl1−xN on the base of existing data on the energy band structure and optical absorption in these materials. We calculated the interband matrix elements for the direct optical transitions between the conductivity band and the valence one using the experimental photon energy dependence of the absorption coefficient near the band edge. In our calculations we assumed that the material parameters of the solid solutions (the interband matrix element, carrier effective masses and so on) could be obtained by a linear interpolation between their values in the alloy components. The temperature dependence of the energy gap was taken in the form proposed by Varshni. The calculations of the radiative recombination rates were performed in the wide range of temperature and alloy compositions.


2016 ◽  
Vol 94 (4) ◽  
pp. 389-392 ◽  
Author(s):  
Shang Gao

A diode-end-pumped, passively Q-switched, Nd:YAG laser with a monolayer graphene as saturable absober simultaneously emitting at 1319 and 1338 nm was demonstrated for the first time. The maximum output power, the minimum pulse duration and the highest repetition rate were 586 mW, 317 ns, and 102 kHz, respectively. The corresponding peak power was about 18.1 W.


Sign in / Sign up

Export Citation Format

Share Document