scholarly journals β-Ga2O3 Used as a Saturable Sbsorber to Realize Passively Q-Switched Laser Output

Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1501
Author(s):  
Baizhong Li ◽  
Qiudi Chen ◽  
Peixiong Zhang ◽  
Ruifeng Tian ◽  
Lu Zhang ◽  
...  

β-Ga2O3 crystals have attracted great attention in the fields of photonics and photoelectronics because of their ultrawide band gap and high thermal conductivity. Here, a pure β-Ga2O3 crystal was successfully grown by the optical floating zone (OFZ) method, and was used as a saturable absorber to realize a passively Q-switched all-solid-state 1 μm laser for the first time. By placing the as-grown β-Ga2O3 crystal into the resonator of the Nd:GYAP solid-state laser, Q-switched pulses at the center wavelength of 1080.4 nm are generated under a output coupling of 10%. The maximum output power is 191.5 mW, while the shortest pulse width is 606.54 ns, and the maximum repetition frequency is 344.06 kHz. The maximum pulse energy and peak power are 0.567 μJ and 0.93 W, respectively. Our experimental results show that the β-Ga2O3 crystal has great potential in the development of an all-solid-state 1 μm pulsed laser.

Author(s):  
Baizhong Li ◽  
Qiudi Chen ◽  
Peixiong Zhang ◽  
Ruifeng Tian ◽  
Lu Zhang ◽  
...  

β-Ga2O3 crystal have attracted great attentions in the fields of photonics and photoelectronics because of its ultra wide-band gap and high thermal conductivity. Here, pure β-Ga2O3 crystal was successfully grown by optical floating zone (OFZ) method, and used as saturable absorbers to realize a passively Q-switched all-solid-state 1μm laser for the first time. By placing the as-grown β-Ga2O3 crystal into the resonator of Nd:GYAP solid-state laser, a Q-switched pulses at the center wavelength of 1080.4 nm are generated under a output coupling of 10%. The maximum output power is 191.5 mW while the shortest pulse width is 606.54 ns, and the maximum repetition frequency is 344.06 kHz. The maximum pulse energy and peak power are 0.567 μJ and 0.93 W, respectively. Our experimental results show that β-Ga2O3 crystal has great potential in the development of all-solid-state 1μm pulsed laser.


Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1200 ◽  
Author(s):  
Taijin Wang ◽  
Yonggang Wang ◽  
Jiang Wang ◽  
Jing Bai ◽  
Guangying Li ◽  
...  

In this work, a Tungsten disulfide (WS2) reflective saturable absorber (SA) fabricated using the Langmuir–Blodgett technique was used in a solid state Nd:YVO4 laser operating at 1.34 µm. A Q-switched laser was constructed. The shortest pulse width was 409 ns with the repetition rate of 159 kHz, and the maximum output power was 338 mW. To the best of our knowledge, it is the first time that short laser pulses have been generated in a solid state laser at 1.34 µm using a reflective WS2 SA fabricated by the Langmuir–Blodgett method.


2016 ◽  
Vol 94 (4) ◽  
pp. 389-392 ◽  
Author(s):  
Shang Gao

A diode-end-pumped, passively Q-switched, Nd:YAG laser with a monolayer graphene as saturable absober simultaneously emitting at 1319 and 1338 nm was demonstrated for the first time. The maximum output power, the minimum pulse duration and the highest repetition rate were 586 mW, 317 ns, and 102 kHz, respectively. The corresponding peak power was about 18.1 W.


2021 ◽  
Vol 2075 (1) ◽  
pp. 012020
Author(s):  
M F A Rahman ◽  
P H Reddy ◽  
A Ahmad ◽  
A A Latiff ◽  
M F Baharom ◽  
...  

Abstract In this paper, we present a Q-switched fibre laser at 1069 nm which is induced by an 8 cm long Hafnium bismuth erbium co-doped fibre (HBEDF) saturable absorber (SA). The pulsating laser has a maximum repetition rate of 67 kHz at 175 mW pump power. We obtained the narrowest pulse width of 3.48 μs, the maximum pulse energy of 70.2 nJ, the maximum output power of 4.7 mW and the maximum peak power of 20.1 mW. The Q-switched laser is simple and may found practical applications in medicine and remote sensing.


Laser Physics ◽  
2021 ◽  
Vol 32 (2) ◽  
pp. 025801
Author(s):  
Xiangrui Liu ◽  
Zhuang Li ◽  
Chengkun Shi ◽  
Bo Xiao ◽  
Run Fang ◽  
...  

Abstract We demonstrated 22 W LD-pumped high-power continuous-wave (CW) deep red laser operations at 718.5 and 720.8 nm based on an a-cut Pr3+:YLF crystal. The output power of both polarized directions reached the watt-level without output power saturation. A single wavelength laser operated at 720.8 nm in the π-polarized direction was achieved, with a high output power of 4.5 W and high slope efficiency of approximately 41.5%. To the best of our knowledge, under LD-pumped conditions, the laser output power and slope efficiency are the highest at 721 nm. By using a compact optical glass plate as an intracavity etalon, we suppressed the π-polarized 720.8 nm laser emission. And σ-polarized single-wavelength laser emission at 718.5 nm was achieved, with a maximum output power of 1.45 W and a slope efficiency of approximately 17.8%. This is the first time that we have achieved the σ-polarized laser emission at 718.5 nm generated by Pr3+:YLF lasers.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Hong Yang ◽  
He Wang ◽  
Dingyue Cao ◽  
Dangmin Sun ◽  
Xiaobao Ju

During the course of solar module encapsulation, the output power of crystalline silicon solar module is less than the sum of the maximum output power of the constituents because of power loss. So it is very important to investigate the power loss caused by encapsulation materials and module production process. In this paper, the power loss of crystalline silicon solar module is investigated by experiments systematically for the first time. It is found that the power loss is mainly caused by the resistance of ribbon and mismatch of solar cells; the total power loss is as high as 3.93% for solar module composed of 72 cells (125 mm × 125 mm) connected in series. Analyzing and reducing the power losses are beneficial to optimizing encapsulation process for the solar module. The results presented in this study give out a direction to decreasing power loss and optimizing encapsulation process of crystalline silicon solar module.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2364
Author(s):  
Lina Zhao ◽  
Ye Yuan ◽  
Luyang Tong ◽  
Wenyu Zhang ◽  
Zhongshuai Zhang ◽  
...  

A stable, passively Q-switched Yb:CaGdAlO4 laser based on Mo:BiVO4 saturable absorber was demonstrated. Close observations of the structure and morphology of the nanoparticles by using transmission electron microscope, Raman spectrum and linear absorption were measured. The nonlinear transmission of Mo:BiVO4 was characterized by a 30 ps laser with a central wavelength of 1064 nm and a repetition rate of 10 Hz. The experimental maximum output power of the pulsed laser was 510 mW with a repetition rate of 87 kHz and pulse width of 3.18 μs, corresponding to a peak power of 1.84 W and a single pulse energy of 5.8 μJ. The experimental results indicate that Mo:BiVO4-SA is a great candidate for passively Q-switched lasers in the near infrared region.


2005 ◽  
Vol 19 (27) ◽  
pp. 1411-1417 ◽  
Author(s):  
YUNG-SHENG HUANG ◽  
KUN-FU TSENG ◽  
FANG-LING CHANG

We have proposed a model to incorporate the energy transfer up-conversion (ETU) effect on the performance of actively LD-pumped Q-switched kilo-watt lasers. Under the optimal output transmission condition, the optimal ratio of the pump mode to the laser mode are found to be within 0.85 and 1.1 to minimize the influence of the ETU on the output power, so the maximum pulse energy and the peak power can be obtained.


2008 ◽  
Vol 2008 ◽  
pp. 1-3
Author(s):  
Yulong Tang ◽  
Yong Yang ◽  
Jianqiu Xu

Wide wavelength tuning by a variable reflective output coupler is demonstrated in high-power double-cladTm3+-doped silica fiber lasers diode-pumped at∼790  nm. Varying the output coupling from 96% to 5%, the laser wavelength is tuned over a range of 106  nm from 1949 to 2055  nm. The output power exceeds 20  W over 90-nm range and the maximum output power is 32  W at 1949  nm for 51-W launched pump power, corresponding to a slope efficiency of∼70%. Assisted with different fiber lengths, the tuning range is expanded to 240  nm from 1866 to 2107  nm with the output power larger than 10  W.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3179
Author(s):  
Shande Liu ◽  
Yuqing Zhao ◽  
Ke Zhang ◽  
Bo Chen ◽  
Ning Zhang ◽  
...  

A high-quality Nd0.01:Gd0.89La0.1NbO4 (Nd:GLNO) crystal is grown by the Czochralski method, demonstrating wide absorption and fluorescence spectra and advantage for producing ultrafast laser pulses. In this paper, the tunable and passively mode-locking Nd:GLNO lasers are characterized for the first time. The tuning coverage is 34.87 nm ranging from 1058.05 to 1092.92 nm with a maximum output power of 4.6 W at 1065.29 nm. A stable continuous-wave (CW) passively mode-locking Nd:GLNO laser is achieved at 1065.26 nm, delivering a pulse width of 9.1 ps and a maximum CW mode-locking output power of 0.27 W.


Sign in / Sign up

Export Citation Format

Share Document