Lattice Structure of D, T, and SR Fuzzy Flip-Flops Under Max-Min Logic

Author(s):  
Shinichi Yoshida ◽  
◽  
Kaoru Hirota ◽  

Lattice structures of fuzzy flip-flops are described. A binary flip-flop (e.g. D, T, set-type SR, or reset-type SR flip-flop) can be extended to a fuzzy flip-flop in various ways. Under max-min fuzzy logic, there are 4 types of D fuzzy flip-flops extended from a binary D flip-flop, 136 types of SR fuzzy flip-flops extended from a binary SR flip-flop, and only one T fuzzy flip-flop. There is a lattice structure among different types of fuzzy flip-flops extended from a same binary flip-flop in terms of the order of ambiguity and the order of fuzzy logical value. These results show that fuzzy flip-flops under max-min fuzzy logic construct distributive lattice structures. Moreover D and T fuzzy flip-flops constructs Boolean lattice. And there exists a order monotone between two lattices of same fuzzy flip-flop under the order of ambiguity and the order of fuzzy logical value. Proposed analysis and results have potential to establish a fuzzy sequential system design method.

10.37236/1768 ◽  
2004 ◽  
Vol 11 (1) ◽  
Author(s):  
Stefan Felsner

The set of all orientations of a planar graph with prescribed outdegrees carries the structure of a distributive lattice. This general theorem is proven in the first part of the paper. In the second part the theorem is applied to show that interesting combinatorial sets related to a planar graph have lattice structure: Eulerian orientations, spanning trees and Schnyder woods. For the Schnyder wood application some additional theory has to be developed. In particular it is shown that a Schnyder wood for a planar graph induces a Schnyder wood for the dual.


2018 ◽  
Vol 140 (9) ◽  
Author(s):  
Yafeng Han ◽  
Wen Feng Lu

Lattice structures are broadly used in lightweight structure designs and multifunctional applications. Especially, with the unprecedented capabilities of additive manufacturing (AM) technologies and computational optimization methods, design of nonuniform lattice structures has recently attracted great research interests. To eliminate constraints of the common “ground structure approaches” (GSAs), a novel topology optimization-based method is proposed in this paper. Particularly, the structural wall thickness in the proposed design method was set as uniform for better manufacturability. As a solution to carry out the optimized material distribution for the lattice structure, geometrical size of each unit cell was set as design variable. The relative density model, which can be obtained from the solid isotropic microstructure with penalization (SIMP)-based topology optimization method, was mapped into a nonuniform lattice structure with different size cells. Finite element analysis (FEA)-based homogenization method was applied to obtain the mechanical properties of these different size gradient unit cells. With similar mechanical properties, elements with different “relative density” were translated into unit cells with different size. Consequently, the common topology optimization result can be mapped into a nonuniform lattice structure. This proposed method was computationally and experimentally validated by two different load-support design cases. Taking advantage of the changeable surface-to-volume ratio through manipulating the cell size, this method was also applied to design a heat sink with optimum heat dissipation efficiency. Most importantly, this design method provides a new perspective to design nonuniform lattice structures with enhanced functionality and manufacturability.


2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Woong June Chung ◽  
Jae-Han Lim

The purpose of the thermally activated building system design is to maintain the thermal comfort of the building indoor environment by securing enough thermal output of the system. For preventing the condensation on the thermally activated building system, the air system is mostly integrated with the thermally activated building system. However, the common design method in the standards only considers the thermal performance of the system itself and cannot reflect the effects of the air system. Thus, the design process of the thermally activated building system should include the consideration about the latent load and ventilation. In order to reflect the effect of the air system, the amount of sensible load removed by the thermally activated building system and air system should be included in the design process. The sensible load handled by the air system highly depends on the type of the air system and design consideration to prevent the condensation and maintain the indoor air quality. In this study, the air system choosing process was included by simulating and observing the sensible load removed by different types of the air system, and thermal performance adjustment in the design process was proposed.


Author(s):  
Kazumichi Ogura ◽  
Michael M. Kersker

Backscattered electron (BE) images of GaAs/AlGaAs super lattice structures were observed with an ultra high resolution (UHR) SEM JSM-890 with an ultra high sensitivity BE detector. Three different types of super lattice structures of GaAs/AlGaAs were examined. Each GaAs/AlGaAs wafer was cleaved by a razor after it was heated for approximately 1 minute and its crosssectional plane was observed.First, a multi-layer structure of GaAs (100nm)/AlGaAs (lOOnm) where A1 content was successively changed from 0.4 to 0.03 was observed. Figures 1 (a) and (b) are BE images taken at an accelerating voltage of 15kV with an electron beam current of 20pA. Figure 1 (c) is a sketch of this multi-layer structure corresponding to the BE images. The various layers are clearly observed. The differences in A1 content between A1 0.35 Ga 0.65 As, A1 0.4 Ga 0.6 As, and A1 0.31 Ga 0.69 As were clearly observed in the contrast of the BE image.


Author(s):  
Masataka Yoshimura ◽  
Yoshiyuki Chujo ◽  
Kenji Doi ◽  
Shinji Nishiwaki ◽  
Kazuhiro Izui

2014 ◽  
Vol 716-717 ◽  
pp. 1518-1521
Author(s):  
Shu Fang ◽  
Yan Xu ◽  
Fei Dong

The manufacture of fire robot has characteristics such as different types and piece production, and flexible manufacture and cost control of the fire robot must be considered due to these characteristics. In this paper, the similarity of fire robot’s working environment was analyzed, The demand of chassis’s adaptability and the method using general technical platform were discussed with the thinking of modular design, and new series fire robots which composed of the general platform and different function modules were proposed, and the manufacture cost of traditional design method and modular design method were compared in using the activity-based costing method, and under the new design method the manufacture cost were decreased extremely.


Author(s):  
Mahmoud A. Alzahrani ◽  
Seung-Kyum Choi

With rapid developments and advances in additive manufacturing technology, lattice structures have gained considerable attention. Lattice structures are capable of providing parts with a high strength to weight ratio. Most work done to reduce computational complexity is concerned with determining the optimal size of each strut within the lattice unit-cells but not with the size of the unit-cell itself. The objective of this paper is to develop a method to determine the optimal unit-cell size for homogenous periodic and conformal lattice structures based on the strain energy of a given structure. The method utilizes solid body finite element analysis (FEA) of a solid counter-part with a similar shape as the desired lattice structure. The displacement vector of the lattice structure is then matched to the solid body FEA displacement results to predict the structure’s strain energy. This process significantly reduces the computational costs of determining the optimal size of the unit cell since it eliminates FEA on the actual lattice structure. Furthermore, the method can provide the measurement of relative performances from different types of unit-cells. The developed examples clearly demonstrate how we can determine the optimal size of the unit-cell based on the strain energy. Moreover, the computational cost efficacy is also clearly demonstrated through comparison with the FEA and the proposed method.


2022 ◽  
pp. 1-36
Author(s):  
Xiaojie Ma ◽  
Luqi Liu ◽  
Zhong Zhang ◽  
Yueguang Wei

Abstract We study the bending stiffness of symmetrically bent circular multilayer van der Waals (vdW) material sheets, which corresponds to the non-isometric configuration in bulge tests. Frenkel sinusoidal function is employed to describe the periodic interlayer tractions due to the lattice structure nature and the bending stiffness of sheets is theoretically extracted via an energetic consideration. Our quantitative prediction shows good agreement with recent experimental results, where the bending stiffness of different types of sheets with the comparable thickness could follow a trend opposite to their Young's moduli. Based on our model, we propose that this trend may experience a transition as the thickness decreases. Apart from the apparent effects of Young's modulus and interlayer shear strength, the interlayer distance is also found to have an important impact on the bending stiffness. In addition, according to our analysis on the size effect, the bending stiffness of such symmetrically bent circular sheets can steadily own a relatively large value, in contrast to the cases of isometric deformations.


Sign in / Sign up

Export Citation Format

Share Document