scholarly journals Zeta Potential of Various Oxide Particles and the Charging Mechanism.

1999 ◽  
Vol 107 (1242) ◽  
pp. 119-122 ◽  
Author(s):  
Yoshinori TAKAYAMA ◽  
Hideyuki NEGISHI ◽  
Satoshi NAKAMURA ◽  
Nobuyuki KOURA ◽  
Yasushi IDEMOTO ◽  
...  
Coatings ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 471 ◽  
Author(s):  
Huiying Cao ◽  
Baichao An ◽  
Yong Wang ◽  
Kun Zhou ◽  
Naiyan Lu

Nano/submicron particles can be activated by surfactants and aggregate at the air-water interface to generate and stabilize foams. Such systems have been applied extensively in the food, medicine, and cosmetic industries. Studying particle charging behavior in a particle/surfactant/water system is a fundamental way to understand the activation of the particle surface. This paper presents an investigation of the charging behavior of polystyrene (PS) particles dispersed in aqueous solutions of the surfactant sodium di-2-ethylhexylsulfosuccinate (AOT). The results showed that zeta potential of PS was related to the AOT concentration with two different concentration regions. Below the critical micelle concentration (CMC), the charging of PS particles was effected by AOT ions; while above the CMC, it came from both AOT ions and AOT micelles. This behavior was different from that observed for PS in aqueous salt solutions. Additionally, the particle concentration and size were found to affect the zeta potential differently in the two AOT concentration regions. By analyzing these results, the charging mechanism of the PS/AOT/water system was revealed to be preferential adsorption. In summary, the study disclosed the internal connection between the PS charging in aqueous AOT solution and the activation of PS particles, as well as their influence to foam formation and stability.


1999 ◽  
Vol 14 (5) ◽  
pp. 2088-2091
Author(s):  
Sixin Wu ◽  
Congshan Zhu

2-[3-(1,3-dihydro-1,3,3-trimethyl-2H-indol-2-ylidine)-1-propenyl]-1,3,3-trimethyl-3H-indolium idoide (HICI) dye-doped SiO2 particles were synthesized by sol-gel method. Dimension, diameter, distribution, and homogeneity of the particles are closely related to the positively charged dye concentration, corresponding to the zeta potential of the particles. When the dye concentration reaches about 7.8 × 10−4 mol/mol SiO2, corresponding to the isoelectric point of the particles, the maximum particle size and the most homogeneity can be reached.


2020 ◽  
Vol 20 (2) ◽  
pp. 43-48
Author(s):  
B. Koomson ◽  
E. K. Asiam

The dramatic increase in hydrometallurgical extraction of gold from arsenic bearing gold ores has inevitably resulted in the release of arsenic into the environment worldwide. Residual arsenic minerals in tailings storage facilities can be oxidised and mobilise arsenic into the environment. This can contaminate soils, ground and surface waters and eventually biota. In spite of well-established technologies and recent advances in arsenic remediation, there are limited knowledge and understanding of the iron oxide substrate (goethite, hematite and magnetite) mineralogy and the fate of arsenic on the surface charge of these iron oxide substrates in an aqueous media during adsorption. The aim of the present study was to investigate the influence of interfacial chemistry on arsenic adsorption onto selected iron oxide particles to assist in developing a better understanding and new knowledge in arsenic removal from contaminated waters. Bulk mineralogy and partial chemical composition of selected iron oxide minerals were obtained using quantitative x-ray diffractometry (QXRD) and acid digestion followed by metal determination using inductively coupled plasma optical emission spectrometry (ICP-OES) respectively. Zeta Potential measurements involving iron oxide particles as arsenic adsorbents were carried out to elucidate the influence of interfacial chemistry on the adsorption behavior of arsenic from solution. The study confirmed that the iron oxide minerals were predominantly hematite, magnetite and goethite with goethite containing significant amounts of quartz. Arsenic adsorption was pH dependent and strongly influenced the zeta potential and isoelectric point (IEP) of the iron oxide particles. The zeta potential of all substrates studied was strongly positive at pH 2 but indicated a reversal at pH ~ > 9. The interaction between substrates, arsenic and its hydrolysable products resulted in significant decrease in the magnitude of zeta potential and change in IEP indicating specific adsorption.   Keywords: Arsenic, Adsorption, Iron Oxide Minerals, Zeta Potential


Author(s):  
M.S. Grewal ◽  
S.A. Sastri ◽  
N.J. Grant

Currently there is a great interest in developing nickel base alloys with fine and uniform dispersion of stable oxide particles, for high temperature applications. It is well known that the high temperature strength and stability of an oxide dispersed alloy can be greatly improved by appropriate thermomechanical processing, but the mechanism of this strengthening effect is not well understood. This investigation was undertaken to study the dislocation substructures formed in beryllia dispersed nickel alloys as a function of cold work both with and without intermediate anneals. Two alloys, one Ni-lv/oBeo and other Ni-4.5Mo-30Co-2v/oBeo were investigated. The influence of the substructures produced by Thermo-Mechanical Processing (TMP) on the high temperature creep properties of these alloys was also evaluated.


Author(s):  
D. N. Braski ◽  
P. D. Goodell ◽  
J. V. Cathcart ◽  
R. H. Kane

It has been known for some time that the addition of small oxide particles to an 80 Ni—20 Cr alloy not only increases its elevated-temperature strength, but also markedly improves its resistance to oxidation. The mechanism by which the oxide dispersoid enhances the oxidation resistance is being studied collaboratively by ORNL and INCO Alloy Products Company.Initial experiments were performed using INCONEL alloy MA754, which is nominally: 78 Ni, 20 Cr, 0.05 C, 0.3 Al, 0.5 Ti, 1.0 Fe, and 0.6 Y2O3 (wt %).Small disks (3 mm diam × 0.38 mm thick) were cut from MA754 plate stock and prepared with two different surface conditions. The first was prepared by mechanically polishing one side of a disk through 0.5 μm diamond on a syntron polisher while the second used an additional sulfuric acid-methanol electropolishing treatment to remove the cold-worked surface layer. Disks having both surface treatments were oxidized in a radiantly heated furnace for 30 s at 1000°C. Three different environments were investigated: hydrogen with nominal dew points of 0°C, —25°C, and —55°C. The oxide particles and films were examined in TEM by using extraction replicas (carbon) and by backpolishing to the oxide/metal interface. The particles were analyzed by EDS and SAD.


Author(s):  
E. R. Kimmel ◽  
H. L. Anthony ◽  
W. Scheithauer

The strengthening effect at high temperature produced by a dispersed oxide phase in a metal matrix is seemingly dependent on at least two major contributors: oxide particle size and spatial distribution, and stability of the worked microstructure. These two are strongly interrelated. The stability of the microstructure is produced by polygonization of the worked structure forming low angle cell boundaries which become anchored by the dispersed oxide particles. The effect of the particles on strength is therefore twofold, in that they stabilize the worked microstructure and also hinder dislocation motion during loading.


TAPPI Journal ◽  
2016 ◽  
Vol 15 (5) ◽  
pp. 331-335 ◽  
Author(s):  
LEBO XU ◽  
JEREMY MYERS ◽  
PETER HART

Retention of cationic dispersed rosin size was studied via turbidity measurements on stock filtrate with different alum and dispersed rosin size dosages. Stock charge characteristics were analyzed using both an analysis of charge demand determined via a streaming current detector and an evaluation of zeta potential of the fibers by streaming potential measurement. The results indicated that an optimum amount of alum existed such that good sizing retention was maintained throughout a wide range of dispersed rosin size dosages. However, when an excessive amount of alum was used and fines and colloidal particles were transitioned from anionic to cationic, the cationic size retention was reduced. Laboratory results were confirmed with a paper machine trial. All data suggested that a stock charge study was necessary to identify optimal alum dosage for a cationic dispersed rosin sizing program.


Sign in / Sign up

Export Citation Format

Share Document