scholarly journals Gut Microbiota Shift in Obese Adolescents Born by Cesarean Section

2020 ◽  
Vol 10 (4) ◽  
pp. 424-429
Author(s):  
Evgenia Novikova ◽  
Natalia Belkova ◽  
Anna Pogodina ◽  
Anastasia Romanitsa ◽  
Elizaveta Klimenko ◽  
...  

Background: It is known that in the early postnatal period a variety of factors affect the gut microbiota (GM) composition, including delivery mode. The effect of delivery mode on the human GM in the late postnatal period remains unexplored. A shift of GM composition due to delivery mode may contribute to the development of obesity in adulthood. Methods and Results: The study included six adolescents aged between 11 and 17 years treated and examined at the Clinic of the Scientific Center for Family Health and Human Reproduction (Irkutsk, Russia) in 2016. Stool samples were collected following the standard operating procedures according to the International Human Microbiome Standards. Metasequencing of V3-V4 variable regions of the 16S rRNA gene was performed by the Novogene Company (China) on the Illumina platform. Bioinformatic analysis was done by the bri-shur.com services. Sequencing reads were presented as normalized values. In general, the GM composition of obese adolescents born by cesarean section was characterized by composition heterogeneity within the Bacteroidetes phylum and the dominance of certain phylotypes as signs of dysbiosis for each adolescent. We detected an increased abundance of phyla Bacteroides and Proteobacteria, and an absence of Tenericutes in obese adolescents born by Caesarean section. On the level of genera, the prevalence of Bacteroides and Bacteroides S24-7 phylotypes, and the absence of the RF39 phylotype, led to the GM shift associated with a cesarean section or obesity. Conclusion: Obese adolescents born by cesarean section delivery present the shift in GM composition.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vanessa Palmas ◽  
Silvia Pisanu ◽  
Veronica Madau ◽  
Emanuela Casula ◽  
Andrea Deledda ◽  
...  

AbstractIn the present study, we characterized the distinctive signatures of the gut microbiota (GM) from overweight/obese patients (OB), and normal-weight controls (NW), both of Sardinian origin. Fecal bacterial composition of 46 OB patients (BMI = 36.6 ± 6.0; F/M = 40/6) was analyzed and compared to that of 46 NW subjects (BMI = 21.6 ± 2.1; F/M = 41/5), matched for sex, age and smoking status, by using 16S rRNA gene sequencing on MiSeq Illumina platform. The gut microbial community of OB patients exhibited a significant decrease in the relative abundance of several Bacteroidetes taxa (i.e. Flavobacteriaceae, Porphyromonadaceae, Sphingobacteriaceae, Flavobacterium, Rikenella spp., Pedobacter spp., Parabacteroides spp., Bacteroides spp.) when compared to NW; instead, several Firmicutes taxa were significantly increased in the same subjects (Lachnospiraceae, Gemellaceae, Paenibacillaceae, Streptococcaceae, Thermicanaceae, Gemella, Mitsuokella, Streptococcus, Acidaminococcus spp., Eubacterium spp., Ruminococcus spp., Megamonas spp., Streptococcus, Thermicanus, Megasphaera spp. and Veillonella spp.). Correlation analysis indicated that body fatness and waist circumference negatively correlated with Bacteroidetes taxa, while Firmicutes taxa positively correlated with body fat and negatively with muscle mass and/or physical activity level. Furthermore, the relative abundance of several bacterial taxa belonging to Enterobacteriaceae family, known to exhibit endotoxic activity, was increased in the OB group compared to NW. The results extend our knowledge on the GM profiles in Italian OB, identifying novel taxa linking obesity and intestine.


2021 ◽  
Vol 12 (2) ◽  
pp. 567-573
Author(s):  
Kaiyu Pan ◽  
Lianfang Yu ◽  
Chengyue Zhang ◽  
Jianhua Zhan ◽  
Rongliang Tu

Gut microbiota can influence cell differentiation, metabolism, and immune function and is key for the normal development and future health of early infants. Several factors have been reported to be related to the microbiota composition of neonates, such as gestational age, delivery mode, feeding method, antibiotics consumption, and ethnicity, among others. So we investigated the relationship between gestational age and the composition and predicted function of the gut microbiota of neonates and early infants by sequencing the 16S rRNA gene present in stool samples obtained from 100 prospectively enrolled full-term and preterm newborns. In the 3-day-old neonates samples, the prominent genera in the full-term group were Escherichia-Shigella, Streptococcus, Bifidobacterium, and Bacteroides, while in the preterm group, Staphylococcus, Streptococcus, Escherichia-Shigella and Clostridium were the most abundant genera identified. There were statistical difference between two groups(P<0.05). Moreover, the predominant genera in the full-term group were Bifidobacterium, Lactobacillus, Bacteroides, and Clostridium , whereas the main genera in the preterm group were Escherichia-Shigella, Clostridium, Bifidobacterium and Bacteroides, in stool samples from 30-42-day-old infants. We found the α-diversity in 3-day-old group was significantly lower than in the 30-42-day-old group whether it’s full-term or preterm (P<0.001). Functional inference analysis revealed higher levels of biodegradation and metabolism of carbohydrates, vitamins in the full-term group than in the preterm group, both in neonates and early infants, which may contribute to the stability of the microbiota in the full-term group. There were significant differences in the composition and predicted function of the gut microbiota of early infants due to gestational age. The 16S sequencing technology was an effective and reliable tool in the detection of gut microbiota in early infants.


2021 ◽  
Vol 14 ◽  
pp. 175628642110356
Author(s):  
Andreas Totzeck ◽  
Elakiya Ramakrishnan ◽  
Melina Schlag ◽  
Benjamin Stolte ◽  
Kathrin Kizina ◽  
...  

Background: Myasthenia gravis (MG) is an autoimmune neuromuscular disease, with gut microbiota considered to be a pathogenetic factor. Previous pilot studies have found differences in the gut microbiota of patients with MG and healthy individuals. To determine whether gut microbiota has a pathogenetic role in MG, we compared the gut microbiota of patients with MG with that of patients with non-inflammatory and inflammatory neurological disorders of the peripheral nervous system (primary endpoint) and healthy volunteers (secondary endpoint). Methods: Faecal samples were collected from patients with MG ( n = 41), non-inflammatory neurological disorder (NIND, n = 18), chronic inflammatory demyelinating polyradiculoneuropathy (CIDP, n = 6) and healthy volunteers ( n = 12). DNA was isolated from these samples, and the variable regions of the 16S rRNA gene were sequenced and statistically analysed. Results: No differences were found in alpha- and beta-diversity indices computed between the MG, NIND and CIDP groups, indicating an unaltered bacterial diversity and structure of the microbial community. However, the alpha-diversity indices, namely Shannon, Chao 1 and abundance-based coverage estimators, were significantly reduced between the MG group and healthy volunteers. Deltaproteobacteria and Faecalibacterium were abundant within the faecal microbiota of patients with MG compared with controls with non-inflammatory diseases. Conclusion: Although the overall diversity and structure of the gut microbiota did not differ between the MG, NIND and CIDP groups, the significant difference in the abundance of Deltaproteobacteria and Faecalibacterium supports the possible role of gut microbiota as a contributor to pathogenesis of MG. Further studies are needed to confirm these findings and to develop possible treatment strategies.


2019 ◽  
Vol 74 (2) ◽  
pp. 132-139 ◽  
Author(s):  
Shohei Akagawa ◽  
Shoji Tsuji ◽  
Chikushi Onuma ◽  
Yuko Akagawa ◽  
Tadashi Yamaguchi ◽  
...  

Background/Aims: The mode of delivery (vaginal or cesarean section) and feeding type (breastfeeding or formula feeding) of neonates are considered the most influential factors in the development of gut microbiota. Objectives: This study investigated the effect of prebiotic-rich breast milk on overcoming gut microbiota dysbiosis. Method: Stool samples from 36 healthy Japanese neonates were obtained at 4 days and 1 month of age, and divided into 4 groups based on mode of delivery and feeding type. The gut microbiota composition and bacterial diversity were assessed using 16S rRNA sequencing. Results: At 4 days old, vaginally delivered neonates had a significantly higher diversity of bacteria than those born by cesarean section. Bacteroidales and Enterobacteriales were overrepresented in vaginally delivered neonates (p = 0.0031 and p = 0.011), while Bacillales and Lactobacillales were overrepresented in caesarean section delivered neonates (p = 0.012 and p = 0.0016). However, there was little difference in bacterial diversity and bacterial relative abundance at 1 month of age between groups. Conclusions: Cesarean section delivery appeared to reduce the diversity of neonate gut microbiota, resulting in dysbiosis, but this improved to the equivalent level seen in vaginally delivered infants by 1 month of age. Breastfeeding, even for short periods, may therefore improve neonate gut dysbiosis.


2021 ◽  
Vol 170 (3) ◽  
pp. 321-325
Author(s):  
E. V. Grigorova ◽  
N. L. Belkova ◽  
U. M. Nemchenko ◽  
E. S. Klimenko ◽  
A. V. Pogodina ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Chenchen Zhang ◽  
Lixiang Li ◽  
Biying Jin ◽  
Xinyan Xu ◽  
Xiuli Zuo ◽  
...  

The delivery mode is an important factor driving alteration in the gut microbiota during the neonatal period. Several studies prove that the alteration of gut microbiota induced by cesarean section could influence the activation of intestinal epithelial cells and the development of immune system. Further, some autoimmune and metabolic disorders may be related to the microbiota dysbiosis in infants caused by cesarean section. It is noteworthy that probiotics could promote the intestinal microecology, which may further prevent and treat cesarean section related diseases. This review summarized the great significance of delivery mode on microbiota and health, as well as provided clinically feasible methods for the prevention and treatment of cesarean section related gut diseases.


2021 ◽  
Vol 67 (3) ◽  
pp. 139-142
Author(s):  
Ioanina Părlătescu ◽  
◽  
Dragoș Epistatu ◽  
Raluca Ema Pîrvu ◽  
Roxana Elena Bohîlțea ◽  
...  

The route of delivery influences the gut microbiota and the development of the immune system. At the moment of birth, cesarean section infants have a lower diversity of bacteria when compared to naturally born infants. The delivery mode does influence the oral cavity colonization of infants, but there is no relevant association with dental caries.


2018 ◽  
Vol 10 (02) ◽  
pp. 206-213 ◽  
Author(s):  
M. Matsuyama ◽  
L. F. Gomez-Arango ◽  
N. M. Fukuma ◽  
M. Morrison ◽  
P. S. W. Davies ◽  
...  

AbstractThe objective of this study was to investigate the impact of the most commonly cited factors that may have influenced infants’ gut microbiota profiles at one year of age: mode of delivery, breastfeeding duration and antibiotic exposure. Barcoded V3/V4 amplicons of bacterial 16S-rRNA gene were prepared from the stool samples of 52 healthy 1-year-old Australian children and sequenced using the Illumina MiSeq platform. Following the quality checks, the data were processed using the Quantitative Insights Into Microbial Ecology pipeline and analysed using the Calypso package for microbiome data analysis. The stool microbiota profiles of children still breastfed were significantly different from that of children weaned earlier (P&lt;0.05), independent of the age of solid food introduction. Among children still breastfed, Veillonella spp. abundance was higher. Children no longer breastfed possessed a more ‘mature’ microbiota, with notable increases of Firmicutes. The microbiota profiles of the children could not be differentiated by delivery mode or antibiotic exposure. Further analysis based on children’s feeding patterns found children who were breastfed alongside solid food had significantly different microbiota profiles compared to that of children who were receiving both breastmilk and formula milk alongside solid food. This study provided evidence that breastfeeding continues to influence gut microbial community even at late infancy when these children are also consuming table foods. At this age, any impacts from mode of delivery or antibiotic exposure did not appear to be discernible imprints on the microbial community profiles of these healthy children.


2021 ◽  
Vol 12 ◽  
Author(s):  
Gao Long ◽  
Yuting Hu ◽  
Enfu Tao ◽  
Bo Chen ◽  
Xiaoli Shu ◽  
...  

The intestinal microbiota has emerged as a critical regulator of growth and development in the early postnatal period of life. Cesarean section (CS) delivery is one of the strongest disrupting factors of the normal colonization process and has been reported as a risk factor for disorders in later life. In this study, we dynamically and longitudinally evaluated the impact of CS on the initial colonization pattern and development of gut microbiota by 16 healthy Chinese infants with fecal samples collected at 9 time points (day 5, day 8, day 11, week 2, week 4, week 6, week 7, month 2, and month 3) during the first 3 months of life. The V3–V4 regions of 16S rRNA gene were analyzed by Illumina sequencing. In comparison with vaginally delivered (VD) infants, infants born by CS showed decreased relative abundance of Bacteroides and Parabacteroides and enrichment of Clostridium_sensu_stricto_1, Enterococcus, Klebsiella, Clostridioides, and Veillonella. Most interestingly, Firmicutes/Bacteroidetes ratio was found to be significantly higher in the CS group than in the VD group from day 5 until month 3. Besides, the results of microbial functions showed that the VD group harbored significantly higher levels of functional genes in vitamin B6 metabolism at day 5, day 8, week 2, week 4, week 6, week 7, month 2, and month 3 and taurine and hypotaurine metabolism at day 5, while the phosphotransferase system and starch and sucrose metabolism involved functional genes were plentiful in the CS group at day 11, week 2, week 4, week 6, week 7, and month 2 and at week 2, week 7, and month 2, respectively. Our results establish a new evidence that CS affected the composition and development of gut microbiota in the first 3 months and provide a novel insight into strategies for CS-related disorders in later life.


2020 ◽  
Vol 8 (7) ◽  
pp. 1011
Author(s):  
Nahla M. Elsherbiny ◽  
Mohammed Rammadan ◽  
Elham A. Hassan ◽  
Mohamed E. Ali ◽  
Abeer S. Abd El-Rehim ◽  
...  

Autoimmune hepatitis (AIH) is a chronic inflammatory disorder with complex immunopathogenesis. Dysbiosis has been linked to many autoimmune diseases, but its detailed role in autoimmune hepatitis (AIH) still needs rigorous evaluation, especially in Egypt. We aimed to identify the shift in the gut microbiota profile and resultant metabolic pathways in AIH Egyptian patients compared to healthy individuals. Stool samples were collected from 15 AIH-naive patients and from 10 healthy individuals. The V3-V4 hyper-variable regions in16S rRNA gene was amplified and sequenced using Illumina MiSeq platform. Significantly lower bacterial diversity in AIH patients was found compared to the controls. A phylum-level analysis showed the overrepresentation of Firmicutes, Bacteroides, and Proteobacteria. At the genus level, AIH-associated enrichment of Faecalibacterium, Blautia, Streptococcus, Haemophilus, Bacteroides, Veillonella, Eubacterium, Lachnospiraceae and Butyricicoccus was reported in contrast to Prevotella, Parabacteroides and Dilaster, which were significantly retracted in such patients. Overall, the predicted metabolic pathways associated with dysbiosis in AIH patients could orchestrate the potential pathogenic roles of gut microbiota in autoimmune disease, though not in a disease-specific manner, calling for future large-scale studies.


Sign in / Sign up

Export Citation Format

Share Document