scholarly journals Filtration Bypassing Retaining Hydraulic Structures

2020 ◽  
Vol 19 (3) ◽  
pp. 252-257
Author(s):  
G. G. Kruglov ◽  
N. N. Linkevich ◽  
O. V. Nemerovets

Concrete dams that are part of river waterworks are integrated with earthworks or with banks using coastal abutments. If the soil of cost or earthen dam is permeable, then in the zone of contiguity water filtration occurs around the coastal abutment. Calculation of filtration bypassing the coastal abutment at specified water levels in the upper and lower pools is performed with the aim of constructing an encircling curve of depression and determining a gradient of filtration flow that controls the filtration strength of the soil beyond the abutment. This problem has no theoretical solutions – in view of its complexity, approximate calculation methods have been developed for individual calculation schemes. For the case when the soil behind the coastal abutment is homogeneous and isotropic, groundwater inflow from the coast is absent or insignificant and can be neglected, and the coastal abutment is located on a water bed and approximate methods by V. P. Nedrigi and R. R. Chugaeva are proposed in the paper. The experience of surveying a number of Belarusian hydropower stations has shown that the absence of a justified prediction pertaining to the position of groundwater levels beyond the estuary leads to a decrease in the strength and stability of the coastal abutment and its possible destruction. An experimental verification of the approximate method for calculation filtration bypassing the coastal abutment developed by R. R. Chugaev has been carried out in laboratory conditions. According to the obtained experience a depression curve encircling the abutment has been constructed which show good agreement between experimental and calculated data that allows to use this method for reasonable design of coastal abutment structures ensuring their reliable operation.

2021 ◽  
Vol 264 ◽  
pp. 03064
Author(s):  
Khojiakbar Khasanov ◽  
Kakhramon Babajanov ◽  
Nodira Babajanova

The study of the reliability and safety of the constructed earth-fill dams and the comparison with their design and calculated data makes it possible to improve the structures and methods of the calculation substantiation of these structures. This work aims to study the filtration reliability and safety of the earth-fill dam of the Channel water reservoir of the Tuyamuyun hydroelectric complex (THC) on the Amu Darya River, which was put into exploitation in 1984. Field studies were carried out according to the traditional method using results of control and measuring equipment (CME) embedded in the body of the dam. The water levels of the upper and lower reaches, piezometers, and drainage water flow were measured. The maximum water levels upstream of 130.00 were observed in July-August and November 2017, and the minimum of 117.50 at the end of March. The water levels downstream depend on the value of the discharge through the hydrosystem. The maximum level downstream for 2017 was 112.55 m (01.06.2017) with a flow rate of 2000 m3/s. The minimum level downstream of 109.15 m was observed on November 29, 2017, when the discharge into the downstream through the hydroelectric complex was 260 m3/s. A tendency to an increase in the level of the bottom downstream was found. Filling and depletion graphs of the Channel water reservoir have been built, from which it is found that they reached 2.00 m/day, and 1.60 m/day, respectively. This is 4 and 1.6 times more than the standard 0.5 m/day and 1.0 m/day. Of the 53 piezometers, 34 are working conditions; the rest do not work, require flushing. Graphs of water level changes in piezometers show that they change with an average 15-20 day delay in the water level in the Channel water reservoir. In general, the natural depression curve is below the design one. The maximum filtration flow rate was 63.3 l/s at a water level in the upper pool of 129.00.


2018 ◽  
Vol 7 (4) ◽  
pp. 191
Author(s):  
Sherwan Sh. Qurtas

Recharge estimation accurately is crucial to proper groundwater resource management, for the groundwater is dynamic and replenished natural resource. Usually recharge estimation depends on the; the water balance, water levels, and precipitation. This paper is studying the south-middle part of Erbil basin, with the majority of Quaternary sediments, the unconfined aquifer system is dominant, and the unsaturated zone is ranging from 15 to 50 meters, which groundwater levels response is moderate. The purpose of this study is quantification the natural recharge from precipitation. The water table fluctuation method is applied; using groundwater levels data of selected monitoring wells, neighboring meteorological station of the wells, and the specific yield of the aquifers. This method is widely used for its simplicity, scientific, realistic, and direct measurement. The accuracy depends on the how much the determination of specific yield is accurate, accuracy of the data, and the extrapolations of recession of groundwater levels curves of no rain periods. The normal annual precipitation there is 420 mm, the average recharge is 89 mm, and the average specific yield is around 0.03. The data of one water year of 2009 and 2010 has taken for some technical and accuracy reasons.


Author(s):  
Soo-Hyoung Lee ◽  
Jae Min Lee ◽  
Sang-Ho Moon ◽  
Kyoochul Ha ◽  
Yongcheol Kim ◽  
...  

AbstractHydrogeological responses to earthquakes such as changes in groundwater level, temperature, and chemistry, have been observed for several decades. This study examines behavior associated with ML 5.8 and ML 5.1 earthquakes that occurred on 12 September 2016 near Gyeongju, a city located on the southeast coast of the Korean peninsula. The ML 5.8 event stands as the largest recorded earthquake in South Korea since the advent of modern recording systems. There was considerable damage associated with the earthquakes and many aftershocks. Records from monitoring wells located about 135 km west of the epicenter displayed various patterns of change in both water level and temperature. There were transient-type, step-like-type (up and down), and persistent-type (rise and fall) changes in water levels. The water temperature changes were of transient, shift-change, and tendency-change types. Transient changes in the groundwater level and temperature were particularly well developed in monitoring wells installed along a major boundary fault that bisected the study area. These changes were interpreted as representing an aquifer system deformed by seismic waves. The various patterns in groundwater level and temperature, therefore, suggested that seismic waves impacted the fractured units through the reactivation of fractures, joints, and microcracks, which resulted from a pulse in fluid pressure. This study points to the value of long-term monitoring efforts, which in this case were able to provide detailed information needed to manage the groundwater resources in areas potentially affected by further earthquakes.


2021 ◽  
Author(s):  
Calla Gould-Whaley ◽  
Russell Drysdale ◽  
Jan-Hendrick May ◽  
John Hellstrom ◽  
Hai Cheng ◽  
...  

<p>Australia is the driest continent outside of Antarctica yet relatively little is known about its long-term moisture history. Many local palaeoclimate archives suffer preservation problems, particularly in the arid centre of the continent, where weathering and erosion leave behind an incomplete record. In an attempt to redress the paucity of arid-zone palaeoclimate records, we investigate ‘pendulites’, subaqueous speleothems that grow episodically according to fluctuations in local groundwater levels. At Mairs Cave (central Flinders Ranges, South Australia), pendulites have formed around stalactites. During the first sustained episode of drowning, the stalactite is veneered by subaqueous calcite, sealing it and preventing further stalactitic growth after water levels fall. Once sealed, the pendulites only record periods of persistent drowning, assumed to correspond to major pluvial episodes.</p><p>Age data from two pendulite samples collected from close to the ceiling where the highest water levels have reached reveal two main groundwater ‘high-stand’ phases centred on ~67 and ~48 ka, coincident with Southern Hemisphere summer insolation maxima. This suggests that precession-driven southward migration of the ITCZ resulted in regular and persistent incursions of tropical air masses to the central Flinders Ranges. Trace element, stable isotope and growth-rate changes reveal that these orbitally controlled growth intervals are superimposed by regional climate responses to Dansgaard-Oeschger and Heinrich events. The results from Mairs Cave shed new light on the moisture history of central Australia, in particular the competing influences of tropical and middle-latitude circulation systems. This provides a precisely dated regional palaeoclimate template for reconstructing ecosystem changes, understanding human migration/dispersal patterns of the first Australians, and the progressive demise of megafauna. We also highlight the utility of subaqueous speleothems more generally as important archives for investigating arid-zone palaeoclimate.</p>


1999 ◽  
Vol 3 (3) ◽  
pp. 353-361 ◽  
Author(s):  
J. A. Butterworth ◽  
R. E. Schulze ◽  
L. P. Simmonds ◽  
P. Moriarty ◽  
F. Mugabe

Abstract. To evaluate the effects of variations in rainfall on groundwater, long-term rainfall records were used to simulate groundwater levels over the period 1953-96 at an experimental catchment in south-east Zimbabwe. Two different modelling methods were adopted. Firstly, a soil water balance model (ACRU) simulated drainage from daily rainfall and evaporative demand; groundwater levels were predicted as a function of drainage, specific yield and water table height. Secondly, the cumulative rainfall departure method was used to model groundwater levels from monthly rainfall. Both methods simulated observed groundwater levels over the period 1992-96 successfully, and long-term simulated trends in historical levels were comparable. Results suggest that large perturbations in groundwater levels area a normal feature of the response of a shallow aquifer to variations in rainfall. Long-term trends in groundwater levels are apparent and reflect the effect of cycles in rainfall. Average end of dry season water levels were simulated to be almost 3 m higher in the late 1970s compared to those of the early 1990s. The simulated effect of prolonged low rainfall on groundwater levels was particularly severe during the period 1981-92 with a series of low recharge years unprecedented in the earlier record. More recently, above average rainfall has resulted in generally higher groundwater levels. The modelling methods described may be applied in the development of guidelines for groundwater schemes to help ensure safe long-term yields and to predict future stress on groundwater resources in low rainfall periods; they are being developed to evaluate the effects of land use and management change on groundwater resources.


2019 ◽  
Vol 968 ◽  
pp. 234-239
Author(s):  
Talyat Azizov ◽  
Oleksii Melnik ◽  
Oleksandr Myza

The results of experimental studies of combined beams consisting of a stone part, reinforced with side reinforced concrete plates are given. Experimentally shown the viability of the proposed structures. The conditions for ensuring the combined action of a stone beam and a reinforced concrete plate are given. Cases are shown when one-sided plates can be used and when double-sided reinforced concrete plates can be used. A comparison of experimental data with the data calculated by the authors developed methods is given. A good agreement between theoretical and calculated data is shown.


Water SA ◽  
2018 ◽  
Vol 44 (1 January) ◽  
Author(s):  
JE Cobbing

The Grootfontein Aquifer, part of the important North West dolomite aquifers, supplies about 20% of Mahikeng’s domestic water needs. Over-abstraction caused the large natural spring draining the aquifer to disappear in 1981, and groundwater levels have since fallen nearly 30 m in the vicinity of the former spring. Analysis of water levels and a water balance using recent assessments of groundwater abstractions confirm past work describing the hydrogeological functioning of the aquifer, and suggest that current abstractions need to fall by between 19 and 36 ML/day (7 and 13 Mm3/a) to bring the aquifer back into longterm balance. Continued over-abstraction at Grootfontein implies increasing risk to Mahikeng’s water supply, and illuminates the larger challenge of ensuring groundwater use in the North West dolomites that is sustainable and in the public interest.


2012 ◽  
Vol 34 (2) ◽  
pp. 63-72 ◽  
Author(s):  
Joanna Markowska ◽  
Jacek Markowski ◽  
Andrzej Drabiński

Abstract Groundwater table levels in a river valley depend, among other factors, on meteorological and hydrogeological conditions, land use and water levels in watercourses. The primary role of a watercourse is to collect surface and groundwater, and it becomes an infiltrating watercourse at high water levels. Changes in groundwater levels and the range of these changes depend chiefly on the shape, height and duration of the flood wave in the river channel. The assessment of flood wave impact on groundwater was based on long-term measurements of groundwater levels in the Odra valley and observations of water levels in the river channel. Simulations were performed with the use of in-house software FIZ (Filtracja i Zanieczyszczenia; Filtration and Contamination), designed for modelling unsteady water flows within a fully saturated zone. A two-dimensional model with two spatial variables was employed. The process of groundwater flow through a porous medium, non-homogeneous in terms of water permeability, was described with Boussinesq equation. The equation was solved with the use of finite element method. The model was applied to assess groundwater level fluctuations in the Odra valley in the context of actual flood waves on the river. Variations in groundwater table in the valley were analysed in relation to selected actual flood water levels in the Odra in 2001-2003 and 2010. The period from 2001 to 2003 was used to verify the model. A satisfactory agreement between the calculated and the measured values was obtained. Based on simulation calculations, it was proved that flood waves observed in 2010 caused a rise in groundwater table levels in a belt of approximately 1000 metres from the watercourses. It was calculated that at the end of hydrological year 2009/2010, the highest growths, of up to 0.80 m, were observed on piezometers located close to the Odra river channel. The passage of several flood waves on the Odra caused an increase of subsurface retention by 3.0% compared to the initial state.


2018 ◽  
Vol 192 ◽  
pp. 02007
Author(s):  
Phiraphat Aphiphan ◽  
Uma Seeboonruang ◽  
Somyot Kaitwanidvilai

Groundwater salinity is a major problem particularly in the northeastern region of Thailand. Saline groundwater can cause widespread saline soil problem resulting in reducing agricultural productivity as in the Lower Nam Kam River Basin. In order to better manage the salinity problem, it is important to be able to predict the groundwater salinity. The objective of this research was to create a cluster-regression model for predicting the groundwater salinity. The indicator of groundwater salinity in this study was electrical conductivity because it was simple to measure in field. Ninety-eight parameters were measured including precipitation, surface water levels, groundwater levels and electrical conductivity. In this study, the highest groundwater salinity at 3 wells was predicted using the combined cluster and multiple linear regression analysis. Cross correlation and cluster analysis were applied in order to reduce the number of parameters to effectively predict the quality. After the parameter selection, multiple linear regression was applied and the modeling results obtained were R2 of 0.888, 0.918, and 0.692, respectively. This linear regression model technique can be applied elsewhere in the similar situation.


2019 ◽  
Vol 11 (24) ◽  
pp. 7050 ◽  
Author(s):  
Sherien Abdel Aziz ◽  
Martina Zeleňáková ◽  
Peter Mésároš ◽  
Pavol Purcz ◽  
Hany Abd-Elhamid

Several studies have reported that the construction of the Grand Ethiopian Renaissance Dam (GERD) could have severe effects on the water resources in downstream countries, especially Egypt. These effects include changes in surface water level, groundwater levels in shallow and deep aquifers, saltwater intrusion, and increases in soil salinity, which could affect crop yields. This paper assesses the potential impacts of the GERD on the Nile Delta, Egypt. It includes the effects of reducing surface water levels (SWL) and changing the crop patterns at the groundwater levels (GWL), in addition to the effect of cultivating crops that consume less water on soil salinity. A pilot area is selected in the east of the Nile Delta for the assessment. The results of the study revealed that GWL is directly proportional to SWL. Comparing the case study of 2012, when SWL was reduced by 50%, the GWL decreased from 5.0 m to 2.0 m. After adjustment, the crop patterns from rice to other crops decreased the GWL to 1.30 m. Additionally, the results showed that there is a significant relationship between soil salinity and crop patterns. Soil salinity increased during the cultivation of the Delta with non-rice crops, such as grapes. Salinity increased from 0.45 S/m after 10 years of simulation to 0.48 S/m. This estimation highlights the undesirable effects of the GERD on Egypt’s water resources, soil salinity, crop yields, and national income.


Sign in / Sign up

Export Citation Format

Share Document