Experimental Investigation of Trapped Oil Mobilization with Ferrofluid

SPE Journal ◽  
2021 ◽  
pp. 1-18
Author(s):  
Ningyu Wang ◽  
Yifei Liu ◽  
Luming Cha ◽  
Matthew T. Balhoff ◽  
Maša Prodanovic

Summary Nanoparticles have great potential to mobilize trapped oil in reservoirs because of their chemical, thermal, and interfacial properties. However, the direct application of magnetic forces on superparamagnetic nanoparticles in reservoir engineering applications has not been extensively investigated. We demonstrate the enhanced oil recovery (EOR) potential of hydrophilic superparamagnetic nanoparticles in oil production by direct observation using microfluidics. We studied the mobilization of oil blobs by a ferrofluid (a suspension of hydrophilic superparamagnetic nanoparticles in water) both in a converging/diverging micromodel channel and in a foot-long pore network micromodel, both with varying depth (so-called 2.5D micromodels). The water-based ferrofluid in all cases was the wetting fluid. Initial ferrofluid flooding experiments in single channels were performed without and then with a static magnetic field. This magnetic field caused oil droplet deformation, dynamic breakup into smaller droplets, and subsequent residual oil saturation reduction. During the flooding, after the magnetic field was applied, significant oil displacement was observed within 2 hours [6 pore volumes injected (PVI)], and 86.2% of the oil that was not mobilized without a magnetic field was mobilized within 64 hours (192 PVI). Then, in experiments in the micromodel and in a Hele-Shaw cell without flooding, we observed self-assembly of oil droplets, indicating the formation of the hydrophilic magnetic nanoparticle microstructures (chains under the magnetic field) and their interaction with the oil blobs. Further ferrofluid flooding experiments were performed in a foot-long micromodel under a rotating magnetic field. The oil saturation was reduced from 44.6 to 33.3% after 17 hours (8.5 PVI) of ferrofluid flooding after the rotating magnetic field was applied. Finally, a discussion of field application of ferrofluid flooding is presented.

Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 105
Author(s):  
Lakshmeesha Upadhyaya ◽  
Mona Semsarilar ◽  
Damien Quemener ◽  
Rodrigo Fernández-Pacheco ◽  
Gema Martinez ◽  
...  

In this study, we report the impact of the magnetic field on protein permeability through magnetic-responsive, block copolymer, nanocomposite membranes with hydrophilic and hydrophobic characters. The hydrophilic nanocomposite membranes were composed of spherical polymeric nanoparticles (NPs) synthesized through polymerization-induced self-assembly (PISA) with iron oxide NPs coated with quaternized poly(2-dimethylamino)ethyl methacrylate. The hydrophobic nanocomposite membranes were prepared via nonsolvent-induced phase separation (NIPS) containing poly (methacrylic acid) and meso-2,3-dimercaptosuccinic acid-coated superparamagnetic nanoparticles (SPNPs). The permeation experiments were carried out using bovine serum albumin (BSA) as the model solute, in the absence of the magnetic field and under permanent and cyclic magnetic field conditions OFF/ON (strategy 1) and ON/OFF (strategy 2). It was observed that the magnetic field led to a lower reduction in the permeate fluxes of magnetic-responsive membranes during BSA permeation, regardless of the magnetic field strategy used, than that obtained in the absence of the magnetic field. Nevertheless, a comparative analysis of the effect caused by the two cyclic magnetic field strategies showed that strategy 2 allowed for a lower reduction of the original permeate fluxes during BSA permeation and higher protein sieving coefficients. Overall, these novel magneto-responsive block copolymer nanocomposite membranes proved to be competent in mitigating biofouling phenomena in bioseparation processes.


Author(s):  
Kenichi Kamioka ◽  
Ryuichiro Yamane

The experiments are conducted on the magnetic fluid flow induced by the multi-pole rotating magnetic field in a circular cylinder. The numbers of poles are two, four, six, eight and twelve. The applied electric current and frequency are 2∼6 A and 20∼60 Hz, respectively. The peak velocity of the flow increases with the increase in the strength and the phase velocity of the magnetic field. As the increase in the number of poles, the flow shifts to the outer periphery.


2019 ◽  
Vol 10 (1) ◽  
pp. 164 ◽  
Author(s):  
Mikolaj Pochylski ◽  
Domenico Lombardo ◽  
Pietro Calandra

Magnetically-induced birefringence is usually low in molecular liquids owing to the low magnetic energy of molecules with respect to the thermal one. Despite this, it has been found that a mixture of dibutyl phosphate and propylamine at propylamine molar ratio (X) around 0.33 surprisingly gives an intense effect (∆n/λ ≈ −0.1 at 1 Tesla). In this paper the time- and intensity- response to the magnetic field of such mixture have been studied. It was found that the reaction to the magnetic field is unusually slow (from several minutes to hours) depending of the magnetic field intensity. On the basis of the data, the model of orientable dipoles dispersed in a matrix enables to interpret the magnetic field-induced self-assembly in terms of soft molecules-based nanostructures. The analogy with systems made of magnetically polarizable (solid or soft) particles dispersed in liquid carrier allows understanding, at the microscopic scale, the molecular origin and the supra-molecular dynamics involved in the observed behavior. The data present a novel phenomenon in liquid phase where the progressive building up/change of ordered and strongly interacting amphiphiles is driven by the magnetic field.


2017 ◽  
Vol 38 (4) ◽  
pp. 555-565
Author(s):  
Alicja Przybył ◽  
Rafał Rakoczy ◽  
Maciej Konopacki ◽  
Marian Kordas ◽  
Radosław Drozd ◽  
...  

Abstract The aim of the study was to present an experimental investigation of the influence of the RMF on mixing time. The obtained results suggest that the homogenization time for the tested experimental set-up depending on the frequency of the RMF can be worked out by means of the relationship between the dimensionless mixing time number and the Reynolds number. It was shown that the magnetic field can be applied successfully to mixing liquids.


2011 ◽  
Vol 1310 ◽  
Author(s):  
Vittorio Basso ◽  
Carlo P. Sasso ◽  
Michaela Kuepferling

ABSTRACTIn this paper we review the phase diagram and derive the entropy change for spin reorientation transitions by considering first order magnetization process theory with temperature dependent magneto-crystalline anisotropy constants. We derive the magnetic field-induced entropy change Δs for a transition between easy axis and easy plane, showing that for alternating magnetic field, Δs has a change of sign at the reorientation temperature, while for rotating magnetic field its sign is definite. We apply the model to CoZn W-type barium ferrite.


1999 ◽  
Vol 13 (14n16) ◽  
pp. 2093-2100 ◽  
Author(s):  
G. A. Flores ◽  
J. Liu ◽  
M. Mohebi ◽  
N. Jamasbi

Using optical microscopy, we studied magnetic-field-induced structures in a confined ferrofluid emulsion. Disks, "worms" and branch-like patterns are observed in 2-D, reflecting columnar, bent-wall-like and labyrinthine structures in 3-D. These structures are controlled by varying either the thickness of the cell used to confine the sample, the particle concentration, or the rate of the magnetic field application. The induced structures are characterized by both the ratio of "worms" vs. total aggregates and the average complexity of the aggregates. "Phase" diagrams are obtained between these tuning parameters to characterize columnar to bent-wall structural transitions.


2006 ◽  
Author(s):  
Alicia Williams ◽  
Ashok Sinha ◽  
Pavlos Vlachos ◽  
Ishwar K. Puri

Magnetic Drug Targeting (MDT) has been shown to be a promising technique to effectively deliver medicinal drugs via functionalized [1] magnetic particles to target sites during the treatment of cancer and other diseases [2,3,4]. In this paper, we investigate the interaction of steady and pulsatile flows injected with a ferrofluid, which is a colloidal suspension of superparamagnetic nanoparticles in a glass tube under the influence of a magnetic field. Ferrofluids are colloidal suspensions of single domain magnetic nanoparticles that are of the order of 10 nm in diameter. In this experiment, the ferrofluid particles were directed to a particular region of interest within a 10 mm diameter glass vessel by means of an applied localized magnetic field that originated outside of the vessel. The magnetic field was generated using a rare earth sintered permanent magnet which produced the magnetic field gradient required for inducing a body force on the volume of the ferrofluid. The experimental results reveal flows with rich dynamical phenomena. The aggregation of the ferrofluid produces a self-assembled hemispherical structure which dynamically interacts with the host flow. The aggregation generates an occlusion creating a flow field that is similar to that past an obstruction. However, since the structure itself is of a fluidic nature, it is subject to shear forces caused by the host fluid. In addition, the wake of the flow behind the aggregation creates vortices which are critical to study the stability of the ferrofluid aggregate. This paper presents a detailed investigation of the dynamics of the flow using Time-Resolved Digital Particle Image Velocimetry. To the best of the authors’ knowledge, these are the first quantitative, spatiotemporally resolved measurements documenting the interaction of a host fluid with a ferrofluid aggregate under steady or pulsatile flow conditions.


1989 ◽  
Vol 42 (1) ◽  
pp. 153-164 ◽  
Author(s):  
D. A. Diver ◽  
E. W. Laing ◽  
C. C. Sellar

We have studied wave propagation in a cold plasma, in the presence of a spatially rotating magnetic field of constant magnitude. New features introduced by this variation include streaming velocities and a plasma current in equilibrium and density fluctuations. We present only the case of wave propagation along the axis of rotation of the magnetic field. A set of ordinary differential equations for the electric field components is obtained, which may be combined into a single fourth-order ordinary differential equation with periodic coefficients. Solutions are obtained in closed form and their nature is determined in terms of the physical parameters of the System, magnetic field strength, number density and wave frequency.


2019 ◽  
Author(s):  
Nikolai A Usov ◽  
Ruslan A Rytov ◽  
Vasiliy A Bautin

The dynamics of magnetic nanoparticle in a viscous liquid in rotating magnetic field has been studied by means of numerical simulation and analytical calculations. In the magneto- dynamics approximation three different modes of motion of the unit magnetization vector and particle director are distinguished depending on the rotating magnetic field frequency and amplitude. The specific absorption rate of a dilute assembly of superparamagnetic nanoparticles in rotating magnetic field is calculated by solving the Landau – Lifshitz stochastic equation for unit magnetization vector and stochastic equation for particle director. At elevated frequencies an optimal range of particle diameters is found where the specific absorption rate of an assembly in rotating magnetic field has a maximum. It is shown that for magnetic hyperthermia in rotating magnetic field it is preferable to use rotating magnetic fields of moderate amplitude, H 0 = 100 Oe, in the frequency range 400-600 kHz.


Sign in / Sign up

Export Citation Format

Share Document