Physicochemical Modeling of Barium and Sulfate Transport in Porous Media and Its Application in Seawater-Breakthrough Monitoring

SPE Journal ◽  
2021 ◽  
pp. 1-22
Author(s):  
Yanqing Wang ◽  
Xiang Li ◽  
Jun Lu

Summary Seawater injection is widely used to improve oil recovery in offshore oil reservoirs. However, injecting seawater into reservoirs can cause many flow-assurance issues, such as scaling and reservoir souring, which are strongly related to the percentage of seawater breakthrough. Thermodynamic models have been developed to evaluate the effects of barite deposition on oil production, but the reservoir stripping effect has not been fully considered. In this study, a new model that incorporates both chemical reaction (barium and sulfate reaction) and physical reactions (ion adsorption/desorption) is developed to investigate the in-situbarite-deposition process. To the best of our knowledge, for the first time, ion adsorption/desorption is integrated by coupling the adsorption/desorption isotherm to the reservoir simulator. The barium and sulfate chemical reaction is modeled by incorporating the solubility product constant into the model. The model accuracy is verified through convergence rate tests and comparison with the coreflood experimental results. The simulation results of both barium and sulfate concentration profiles are greatly improved by integrating the ion adsorption/desorption process. The new physicochemical model is further used to investigate barite deposition under various scenarios. Simulation results indicate that most barite deposits are in the deep reservoir for the areal model. Barite that deposits in the reservoir before seawater breakthrough accounts for 45% of total barite deposition and the barite deposited during the seawater-breakthrough period makes up 54%, while the deposition during the tailing period, where the seawater fraction is larger than 95%, is negligible. For a homogeneous reservoir, the barite-deposition period at the near-wellbore area of the producer is between 30% and 65% of the seawater-breakthrough percentage, and heterogeneity leads to a broader deposition period. For vertical heterogeneous reservoirs, a considerable amount of barite forms in the wellbore, which accounts for 17% of total barite deposition. Based on the accurate simulation of barium and sulfate transport in the reservoir, barium and sulfate concentration profiles can be used to determine the seawater-breakthrough percentage and help optimize production operations that aim to mitigate flow assuranceissues.

1998 ◽  
Vol 527 ◽  
Author(s):  
M. Hunkel ◽  
D. Bergner

ABSTRACTA simulation model for intrinsic diffusion of multicomponent multiphase systems is presented. The model is not restricted onto a certain number of components or phases. For simplicity, Manning's random alloy model with vanishing vacancy wind effect is used. Then the cross terms of the diffusion flux can be neglected. The simulation routine uses equations for the fluxes, the equation of continuity and an equation for the change of the thickness of volume elements due to the vacancy flux. With this model diffusions paths, concentration profiles, fluxes of the components as well as marker positions can be calculated. The shift of interfaces and the growth of new phases can also be determined. The simulation results were compared with experimental data of the Cu-Fe-Ni system. Diffusion was studied in single-phase areas and across interfaces.


Author(s):  
Ceng He ◽  
Yuqi Wang ◽  
Jing Song ◽  
Shanshan Li ◽  
Fusheng Yang ◽  
...  

Abstract Metal hydride is an influential and promising material for hydrogen utilization. Researchers have carried out a large number of studies on hydrogen storage apparatus, and developed a few new devices for its promotion. Unfortunately, for most metal hydride reactors, the hydrogenation and dehydrogenation are two independent processes owing to the different required conditions, which could cause many inconveniences and safety problems to the H2 absorption & desorption cycle with high frequency and intensity. Hence we proposed a new type of autoswitch H2 absorption & desorption device based on the structure improvement, which consists of rotation disc, fixed disc and the reactor. The numerical simulation for H2 absorption/desorption using LaNi5 was accomplished, and the optimizations on both structure and operation conditions were achieved within a certain period of cycle time. Simulation results show when the single cycle time is set to 1600 s, the absorption temperature has to be lower than 45 °C (3 MPa) and pressure higher than 1.28 MPa (20 °C), and the desorption temperature should be higher than 41 °C (0.1 MPa) and pressure lower than 0.48 MPa (80 °C) under the same cycle time. Meanwhile, the effects of reaction finish time, operating temperature and H2 pressure during absorption/desorption process was investigated and simulation data were also fitted to develop the structural optimization. Under the hydrogenation/dehydrogenation conditions of 3 MPa (20 °C)/0.1 MPa (80 °C), the simulation results indicate the optimal initial reacted fraction and total cycle time are 0.07 and 1287 s, respectively. Moreover, both structures of autoswitch device with 4 and 6 openings have been optimized to satisfy the requirement of each stage. The autoswitch H2 absorption & desorption device can realize the automatic switch between hydrogenation and dehydrogenation orderly and controllably, which would provide convenience for the occasions with this demand and show its remarkable value during popularization and application.


Author(s):  
wen xi zhao ◽  
Xiaodeng Wang ◽  
Xiaoqing Ma ◽  
Luchao Yue ◽  
Qian Liu ◽  
...  

Pseudocapacitive electrochemical Na+-storage has been highlighted as one of the exploitable strategies in overcoming sluggish diffusion-limited redox kinetics due to effectively structural preserving and fast ion adsorption/desorption at the surface...


2021 ◽  
pp. 13-23
Author(s):  
M.R. Manafov ◽  
◽  
G.S. Aliyev ◽  
A.I. Rustamova ◽  
V.I. Kerimli ◽  
...  

The mechanism of paraffin formation in transport pipes is briefly discussed. A kinetic model of the formation and wax deposition from oil is proposed. Comparison of the model with the available experimental data gave satisfactory results. The review considers software tools for modeling the wax deposition process. It is noted that the simulation results are not always applicable to real field cases. For a more reliable interpretation, the scaling effect must be taken into account. In the work various technologies for wax removal are considered


2008 ◽  
Vol 273-276 ◽  
pp. 782-788 ◽  
Author(s):  
C.R. Ruivo ◽  
J.J. Costa ◽  
A.R. Figueiredo

In this paper the numerical modelling of the behaviour of a channel of a hygroscopic compact matrix is presented. The heat and mass transfer phenomena occurring in the porous medium and within the airflow are strongly coupled, and some properties of the airflow and of the desiccant medium exhibit important changes during the sorption/desorption processes. The adopted physical modelling takes into account the gas side and solid side resistances to heat and mass transfer, as well as the simultaneous heat and mass transfer together with the water adsorption/desorption process in the wall domain. Two phases co-exist in equilibrium inside the desiccant porous medium, the equilibrium being characterized by sorption isotherms. The airflow is treated as a bulk flow, the interaction with the wall being evaluated by using appropriated convective coefficients. The model is used to perform simulations considering two distinct values of the channel wall thickness and different lengths of the channel. The results of the modelling lead to a good understanding of the relationship between the characteristics of the sorption processes and the behaviour of hygroscopic matrices, and provide guidelines for the wheel optimization, namely of the duration of the adsorption and desorption periods occurring in each hygroscopic channel.


2007 ◽  
Vol 307 (2) ◽  
pp. 349-356 ◽  
Author(s):  
Laura E. Valenti ◽  
Pablo A. Fiorito ◽  
Carlos D. García ◽  
Carla E. Giacomelli

2021 ◽  
Author(s):  
Shiva Chahardahmasoumi ◽  
Seyed Amir Hossein Jalali ◽  
Mehdi Nasiri Sarvi

Abstract The adsorption and photo-Fenton degradation of tetracycline (TC) over Fe saturated nanoporous montmorillonite was analyzed. The synthesized samples were characterized using XRD, FTIR, SEM, and XRF analysis, and the adsorption and desorption of TC onto these samples as well as the antimicrobial activity of TC during these processes were analyzed at different pH. The results indicated that the montmorillonite is a great adsorbent for the separation of the TC from aqueous solutions, however, after increasing the amount of TC adsorbed, the desorption process started, and up to 50% of TC adsorbed onto non-modified montmorillonite was released back to the solution with almost no changes in its antimicrobial activity. After acid treatment (for creation of nanoporous layers) and Fe saturation of the montmorillonite, almost similar great separation was achieved compared to non-modified montmorillonite. In addition, the desorption of TC from modified montmorillonite was still high up to 40% of adsorbed TC. However, simultaneous adsorption and photodegradation of TC were detected and almost no antimicrobial activity was detected after 180 min of visible light irradiation, which could be due to the photo-Fenton degradation of TC on the modified montmorillonite surface. In the porous structures of modified montmorillonite high ˙OH radicals were created in the photo-Fenton reaction and were measured using the Coumarin technique. The ˙OH radicals help the degradation of TC as proposed in an oxidation process. Surprisingly, more than 90 % of antimicrobial activity of the TC decreased under visible light (after 180 min) when desorbed from nanoporous Fe-saturated montmorillonite compared to natural montmorillonite. To the best of our knowledge, this is the first time that such a high TC desorption rate from an adsorbent with the least remained antimicrobial activity is reported which makes nanoporous Fe-saturated montmorillonite a perfect separation substance of TC from the environment.


2010 ◽  
Author(s):  
Weiqiang Li ◽  
Daulat D. Mamora

Abstract Steam Assisted Gravity Drainage (SAGD) is one successful thermal recovery technique applied in the Athabasca oil sands in Canada to produce the very viscous bitumen. Water for SAGD is limited in supply and expensive to treat and to generate steam. Consequently, we conducted a study into injecting high-temperature solvent instead of steam to recover Athabasca oil. In this study, hexane (C6) coinjection at condensing condition is simulated using CMG STARS to analyze the drainage mechanism inside the vapor-solvent chamber. The production performance is compared with an equivalent steam injection case based on the same Athabasca reservoir condition. Simulation results show that C6 is vaporized and transported into the vapor-solvent chamber. At the condensing condition, high temperature C6 reduces the viscosity of the bitumen more efficiently than steam and can displace out all the original oil. The oil production rate with C6 injection is about 1.5 to 2 times that of steam injection with oil recovery factor of about 100% oil initially-in-place. Most of the injected C6 can be recycled from the reservoir and from the produced oil, thus significantly reduce the solvent cost. Results of our study indicate that high-temperature solvent injection appears feasible although further technical and economic evaluation of the process is required.


Sign in / Sign up

Export Citation Format

Share Document