Integrated Workflow with Experimentation, Modeling, and Field Studies Enhances Fracture Diversion Design in Carbonate Reservoirs

2021 ◽  
Author(s):  
Abdul Muqtadir Khan ◽  
Zinaida Usova ◽  
Alexey Yudin

Abstract Multiple near-wellbore diverters and their applications exist in the industry. However, understanding of their effectiveness in carbonate acid fracturing applications still has unanswered questions, mainly due to the lack of knowledge on how the fracture width develops at entry points with continuous acid dissolution. This continuum needs to be understood through integrated modeling and experimentation at the yard-scale, and field-scale perspectives. An advanced numerical model was used to analyze the width development in varying calcite/dolomite fractions and acid concentrations. A robust diversion pill was developed during extensive testing, and its performance was validated in the laboratory using a slot test. The goal was to create a system with reliable bridging ability and low permeability to ensure isolation. Multimodal particles help to ensure effective bridging and plug stability. A similar bridging test was conducted at the yard scale with a small pump and low-pressure line setup leading to an 8-mm inside diameter pipe. Results from the laboratory were validated in the yard test to see parameters affecting the bridging. Finally, a well-specific robust workflow was constructed for diversion pill design. Modeling done on a high-resolution fracture hydrodynamics and in-situ kinetics model showed that width development in different scenarios varied from 1.5 to 3.0 mm. Laboratory testing was performed in 0.31- to 063-inch width rectangular slots to normalize the flow rate/area of the cross section, and the plug experienced pressure up to 1,200 psi for several hours at temperatures from 115 to 205°F. No extrusion was observed during the test, which is a valid indicator of plug stability. Sensitivity to flow conditions and carrier fluid properties were estimated. The diversion slurry was mixed in a 0.5 wt% solution of guar gum and displaced at pump rates 100 to 999 ml/min. A yard test was designed to see the bridging of the pill at various concentrations of 75 to 300 lbm/1,000 gal and rates of 0.5 to 3 gal/min. All the laboratory- and yard-scale experimental findings were combined with field case studies to understand fracture bridging for dynamic diversion applications. A workflow using modeling and advanced volumetrics design was devised to enhance the diversion success in field applications. This led to formulating a parametric design measure β, which showed direct correlation and effectiveness on the diversion process. This study gives a 360° solution-based understanding of diversion physics. The proposed combination of mechanical and chemical diversion is a cost-effective method for multistage fracturing. Current comprehensive research involving digitized cores and advanced modeling has significant potential to make this a reliable method to develop tight carbonate formations around the globe.

2016 ◽  
Vol 97 (7) ◽  
pp. 1479-1482 ◽  
Author(s):  
Thomas J. Ashton ◽  
Meriem Kayoueche-Reeve ◽  
Andrew J. Blight ◽  
Jon Moore ◽  
David M. Paterson

Accurate discrimination of two morphologically similar species of Patella limpets has been facilitated by using qPCR amplification of species-specific mitochondrial genomic regions. Cost-effective and non-destructive sampling is achieved using a mucus swab and simple sample lysis and dilution to create a PCR template. Results show 100% concurrence with dissection and microscopic analysis, and the technique has been employed successfully in field studies. The use of highly sensitive DNA barcoding techniques such as this hold great potential for improving previously challenging field assessments of species abundance.


2014 ◽  
Vol 58 (10) ◽  
pp. 5643-5649 ◽  
Author(s):  
Katherine Kay ◽  
Eva Maria Hodel ◽  
Ian M. Hastings

ABSTRACTIt is now World Health Organization (WHO) policy that drug concentrations on day 7 be measured as part of routine assessment in antimalarial drug efficacy trials. The rationale is that this single pharmacological measure serves as a simple and practical predictor of treatment outcome for antimalarial drugs with long half-lives. Herein we review theoretical data and field studies and conclude that the day 7 drug concentration (d7c) actually appears to be a poor predictor of therapeutic outcome. This poor predictive capability combined with the fact that many routine antimalarial trials will have few or no failures means that there appears to be little justification for this WHO recommendation. Pharmacological studies have a huge potential to improve antimalarial dosing, and we propose study designs that use more-focused, sophisticated, and cost-effective ways of generating these data than the mass collection of single d7c concentrations.


2019 ◽  
Vol 11 (2) ◽  
pp. 503-510 ◽  
Author(s):  
Prachi Singh ◽  
Jyoti Singh ◽  
Rahul Singh Rajput ◽  
Anukool Vaishnav ◽  
Shatrupa Ray ◽  
...  

Fusarium wilt is one of the major diseases of tomato causing extensive loss of production. Exploration of agriculturally important microbes (AIMs) for management of the tomato wilt is an ecofriendly and cost effective approach. In the present study, a total 30 Trichoderma and 30 bacterial isolates were screened in the laboratory for their biocontrol activity against Fusarium oxysporum f.sp. lycopersici (FOL). Out of all the isolates tested, Trichoderma asperellum BHU P-1 and Ochrobactrum sp. BHU PB-1 were found to show maximum inhibition of FOL in dual culture assay. Both the microbes also exhibited plant growth promoting activities such as phosphate solubilisation, production of siderophore, hydrogen cyanide (HCN), indole acetic acid (IAA) and protease activity. These microbes could be evaluated further in greenhouse and field studies for their potential use in management of Fusarium wilt of tomato.


Author(s):  
J. C. V. Pereira ◽  
M. P. Serbent ◽  
E. Skoronski

Abstract Organochlorines have diverse structures and applications and are included in the list of persistent organic pollutants (POPs) due to their toxicity and environmental persistence. The reduced capacity of conventional wastewater treatment plants to remove these compounds encourages the development of cost-effective and efficient remediation approaches. Fungal biotechnology can contribute to the development of these technologies through their enzymatic machinery but faces several drawbacks related to the use of dispersed mycelium. In this sense, investigations concerning the degradation of organochlorines using immobilized fungi demonstrated an increase in contaminants removal efficiency compared with degradation by free cells. Despite this interest, the mechanisms of immobilized fungi have not been comprehensively reviewed. In this paper, recent advances of laboratory and field studies in organochlorine compounds removal by fungi were reviewed, focusing on the role of immobilization techniques. Firstly, the mechanisms of organochlorines bioconversion by fungi and the factors affecting enzyme activity are elucidated and discussed in detail. Then, the main targeted compounds, fungi, technics, and materials used for immobilization are discussed, as well as their advantages and limitations. Furthermore, critical points for future studies of the fungi immobilization for organochlorines removal are proposed.


2021 ◽  
Author(s):  
Abdul Muqtadir Khan ◽  
Denis Emelyanov ◽  
Rostislav Romanovskii ◽  
Olga Nevvonen

Abstract Different applications of fracture bridging and diversion are used regularly in carbonate acid fracturing without an in-depth understanding of the physical phenomena that dominate the processes involved in the bridging and diversion process. The extension of modeling capabilities in conjunction with yard-scale and field-scale experiences will increase our understanding of these processes. A robust multimodal diversion pill and polylactic acid fiber-laden viscous acid were utilized for near-wellbore and far-field bridging, respectively. Numerous field treatments demonstrated the uncertainty of achieving effective diversion. An existing multiphysics model was extended to develop functionalities to model diversions at different scale. Extensive laboratory testing was conducted to understand the scale of bridging and diversion mechanisms. Finally, a bridging yard test was designed, and field case studies were used to integrate all the branches. Field cases showed a diversion pressure up to 4,000 psi depending on perforation strategy, pill volume, and pill seating rate. Correlations showed the interdependence of multiple parameters in diversion processes. The field studies motivated modeling capabilities to simulate the critical diversion processes at high resolution and quality. The model simulates diverting agents that reduce leakoff in the fracture area and their effects on fracture geometry. The approach considers the acid reaction kinetics coupled with geomechanics and fluid transport. Different diverting agent concentrations required for bridging can be modeled effectively. A yard test was designed to confirm the integrity of the pill material through completion valves (minimum inside diameter 9.5 mm) and analyzed with high-resolution imaging. All the theoretical, mathematical, and numerical findings from modeling were integrated with laboratory- and yard-scale experimentation results to develop and validate near-wellbore and far-field diversion modeling. Analytical correlations were formulated from injection rate, particulate material concentration, pill volumes, fracture width, etc., to incorporate and validate the model. This study enhances understanding of the different diversion mechanisms from high-fidelity theoretical modeling approach integrated with a practical experimental view at laboratory and field scale. Current comprehensive research has significant potential to make the modeling approach a reliable method to develop tight carbonate formations around the globe.


A completed study of a solar hot water heating system installed in a school showed an annual average efficiency of 15%, the low efficiency largely caused by the unfavourable pattern of use in schools. Field studies, in 80 existing and 12 new houses, of a simple domestic hot water system have been initiated to ascertain the influence of the occupants on the actual performance of solar collector systems. The development of testing methods of solar collectors and solar water heating systems is being undertaken in close collaboration with the B.S.I. and the E.E.C. Solar space heating is being investigated in two experimental low energy house laboratories, one using conventional solar collectors with interseasonal heat storage and the other a heat pump with an air solar collector. Studies of the cost-effectiveness of solar collector applications to buildings in the U.K. show that they are far less cost-effective than other means of conserving energy in buildings.


SPE Journal ◽  
2020 ◽  
Vol 25 (03) ◽  
pp. 1204-1219 ◽  
Author(s):  
Lufeng Zhang ◽  
Fujian Zhou ◽  
Jianye Mou ◽  
Wei Feng ◽  
Zhun Li ◽  
...  

Summary Tool-less temporary-plugging multistage acid fracturing of horizontal well is a necessary technology to unlock the production potential and enable commercial productivity for tight carbonate reservoirs. However, this technique has not been investigated experimentally yet, and the plugging behavior of diverters within acid-etched fracture is still unclear. In this paper, we propose an integrated method to experimentally study tool-less multistage fracturing with diverters. First, we introduce an innovative 3D printing method to reproduce the roughness of acid-etched fracture surface and design an acid-etched fracture temporary plugging evaluation system to satisfy the requirements of temporary plugging experiments. Then, we conduct a series of plugging experiments to optimize the diverter's formula for creating a tight plugging zone within an acid-etched fracture under different fracture widths. On the basis of the description of the fracture surface, we further analyze the formation process and mechanism of temporary plugging. Finally, we further verify through laboratory experiments using a modified true tri-axial fracturing system the feasibility of using a single type of diverter and combined diverters to achieve tool-less temporary plugging staged fracturing of horizontal well. The experimental results show the following findings: (1) Pure fibers can realize temporary plugging at lower fracture width (≤2 mm). (2) To achieve temporary plugging, the diameter of particulates should not be less than half of the fracture width under the condition of larger fracture width (≥4 mm). (3) The fracture surface morphology affects the formation time of temporary plugging, but does not affect whether temporary plugging is formed or not. (4) Using a steel plate with a smooth fracture surface to conduct optimization experiments will increase the dosage of diverters, thus increasing the operation cost. (5) Pure particulates cannot achieve favorable plugging effect. This study provides an insight into multistage acid fracturing.


2017 ◽  
Author(s):  
Mayur A. Makhesana ◽  
Kaushik M. Patel

Machining is the manufacturing process, capable of producing required shape and size by material removal. In recent times industries are striving to enhance the performance of machining processes. One of the problem associated with machining is the amount of heat generation as a result of friction between tool and workpiece. Heat generated may affect the quality of machined surface and tool wear. In order to control it, cutting fluid is applied in large quantity. The problem arises with the use of cutting fluid is its effect on worker’s health and environment. The present investigation is an attempt to explore the use the solid lubricants in machining as an alternative to cutting fluid. The work involves development of minimum quantity solid lubrication set up. Turning experiments has been performed by applying solid lubricants mixed with cutting fluid in minimum quantity. The performance of minimum quantity solid lubrication has been assessed in form of obtained surface finish, power consumption and tool wear during turning. Experimental findings discovered the superiority of minimum quantity solid lubrication over conventional cutting fluid and can be considered as cost effective and sustainable lubrication method.


Facilities ◽  
2014 ◽  
Vol 32 (7/8) ◽  
pp. 396-410
Author(s):  
Paulette R. Hebert ◽  
Mihyun Kang ◽  
Rebekah J. Thompsen

Purpose – The purpose of this study was to examine lighting systems at 77 laboratories located within one building to save energy and associated costs. Design/methodology/approach – Field measurements of illumination were conducted and compared to lighting standards and industry recommendations. Findings – For energy and cost saving, de-lamping all four-lamp luminaires down to two-lamp luminaires and installing occupancy sensors in all laboratories were recommended. Research limitations/implications – The research team’s project working hours and study period were limited. This study begins to fill the gap in the literature regarding lighting field studies. Practical implications – By carefully considering light level recommendations, industry standards and installation budgets, existing facilities can install appropriate retrofits to save energy and money without sacrificing illumination levels. Recommended retrofits are anticipated to significantly curtail annual federal energy consumption practices at the labs. Social implications – The retrofits recommended in this study will reduce US federal government’s energy-related expenditures and greenhouse gas emissions in support of the 2010 Presidential Mandate. The proposed occupancy sensors are anticipated to compensate for humans’ failure to manually control lighting. Originality/value – This field study adds value by documenting cost-effective methods to measure, record and manage laboratory lighting, and it calls for the implementation of social, economic and ecological interventions. The recommended retrofits will reduce US federal government’s energy-related expenditures and greenhouse gas emissions in support of the 2010 Presidential Mandate.


2008 ◽  
Vol 35 (6) ◽  
pp. 555 ◽  
Author(s):  
John W. Turner ◽  
Allen T. Rutberg ◽  
Ricky E. Naugle ◽  
Manpreet A. Kaur ◽  
Douglas R. Flanagan ◽  
...  

Successful immunocontraception of wildlife relying on repeated access to individuals for boosters has highlighted the need to incorporate primer and booster immunisations into one injection. We have investigated use of controlled-release polymers (lactide–glycolide) in small pellets to provide delayed in vivo delivery of booster porcine zona pellucida (PZP) antigen and adjuvant. This report reviews pellet-making methodology, in vitro testing of controlled-release pellets and in vivo effects of controlled-release PZP vaccine. We assessed 3 different manufacturing approaches for producing reliable, cost-effective pellets: (1) polymer melting and extrusion; (2) solvent evaporation from polymer solution; and (3) punch and die polymer moulding. In vitro testing of release patterns of controlled-release formulations, towards development of a 3-year duration vaccine, provided estimates for in vivo use of pellet preparations. These in vitro studies demonstrated protein release delay up to 22 months using 100% l-lactide or polycaprolactone polymers. For in vivo tests, pellets (1-, 3-, and 12-month release delay) serving as boosters were administered intramuscularly with PZP/adjuvant liquid primer to wild horses (Equus caballus), white-tailed deer (Odocoileus virginanus) and African elephants (Loxodonta africana). Horse field studies assessed fertility via offspring counts and/or faecal-hormone pregnancy testing. Treatment decreased fertility 5.3–9.3-fold in Year 1 and 3.6-fold in Year 2. In preliminary testing in deer, offspring counts revealed treatment-associated fertility reduction of 7.1-fold Year 1 and 3.3-fold Year 2. In elephants, treatment elevated anti-PZP titres 4.5–6.9-fold from pretreatment (no fertility data).


Sign in / Sign up

Export Citation Format

Share Document