Innovative Use of Injectivity Tests as Interference Tests during Field Development: The EGINA Experience

2021 ◽  
Author(s):  
Obuekwe Mogbo ◽  
Adetayo Atewologun

Abstract This paper presents the innovative use of interference tests in the assessment of reservoir connectivity and the field oil production rate during the development phase and prior to the first oil of the EGINA field, which is located in a water depth of 1600 m, deep offshore Niger Delta. The interference test campaign involved 26 pre-first oil wells (13 oil producers and 13 water injectors) to assess and subsequently mitigate reservoir connectivity uncertainties arising from the numerous faults and between the different channels within the complexes. The results proved valuable in confirming or otherwise reservoir connectivity, field oil production rate and the number of wells required at first oil to achieve the production plateau. The tests were designed using the analytical method (PIE software) and the reservoir simulation models enabling to establish the cumulative water injection required, the injection duration and the time a response is expected at the observers. These all had impacts on the planning, OIMR vessel requirements and selection of permanent downhole gauges for the wells. In addition, the tests were performed with the water injectors as pulsers and the oil producers as observers allowing to avoid and the associated environmental impact. Ten interference tests were realized compared to four planned in the FDP partly due to the use of the more cost effective OIMR vessel in addition to the rig.

2021 ◽  
Author(s):  
Vil Syrtlanov ◽  
Yury Golovatskiy ◽  
Ivan Ishimov

Abstract In this paper the simplified way is proposed for predicting the dynamics of liquid production and estimating the parameters of the oil reservoir using diagnostic curves, which are a generalization of analytical approaches, partially compared with the results of calculations on 3D simulation models and with actual well production data.


2020 ◽  
pp. 57-60
Author(s):  
K.I. Mustafaev ◽  
◽  
◽  

The production of residual oil reserves in the fields being in a long-term exploitation is of current interest. The extraction of residual oil in such fields was cost-effective and simple technological process and is always hot topic for researchers. Oil wells become flooded in the course of time. The appearance of water shows in production wells in the field development and operation is basically negative occurrence and requires severe control. Namely for this reason, the studies were oriented, foremost, to the prevention of water shows in production well and the elimination of its complications as well. The paper discusses the ways of reflux efficiency increase during long-term exploitation and at the final stages of development to prevent the irrigation and water use in production wells.


Author(s):  
James O. Adeleye ◽  
Olugbenga Olamigoke ◽  
Oluseun T. Mumuni

Abstract Producing an oilfield in a cost-effective way depends on how long water production could be delayed in the reservoir. Many flow mechanisms, correlations, and methods to calculate maximum water-free oil production rate have been published, However, those methods have generally failed to not consider the skin effect which affects the flow into the wellbore. In this paper, the semi-analytical perforation skin model as presented by Karakas and Tariq is incorporated into the Meyer and Garder correlation for critical oil rate from a perforated vertical well interval to obtain the maximum water-free oil production rate and optimal perforation parameters. The resulting coupled computational model is used to determine the sensitivity of the maximum water-free oil production rate to wellbore perforation parameters. Whilst an increase in perforation length and decrease in spacing between perforation increase the critical flow rate, an increase in perforation radius did not translate to higher productivity. The optimal perforation angles are 45° and 60°, however, for the data used in this work the maximum water-free oil rate of 23.2 std/d was obtained at 45° of phasing angle, 1 in of spacing between perforation, 0.36 in of perforation radius and 48 in of perforation length. Thus, the perforation strategy can be optimized prior to drilling and completion operations to improve productivity using the computational model presented in this work.


Author(s):  
Boying Li ◽  
Yuhui Zhou ◽  
Su Li ◽  
Yiping Ye ◽  
Hongfa Liu

AbstractFault-karst reservoirs are featured by complex geological characteristics, and accurate and fast simulation of such kind of reservoirs using traditional simulator and simulation methods is pretty hard. Herein, we tried to discrete the complex fault-karst structures into one-dimensional connected units connecting the well, fracture and cave based on reservoir static physical parameters and injection-production dynamics. Two characteristic parameters, conductivity and connected volume, are proposed to characterize the inter-well connectivity and material basis. Meanwhile, the high-speed non-Darcy seepage term is introduced into the material balance equations for well-fracture-cave connected units to describe the actual seepage characteristics within the fault-karst reservoirs, and to better simulate the oil/water production dynamics. Based on this method, a fracture reservoir model of 1 injection-3 production was established. The change of oil–water action law in different injection and extraction systems under two production regimes of fixed production rate and fixed pressure is analyzed. A case study was conducted on S fault zone, where the flow of oil and gas did not follow the Darcy seepage rule and with a β value of 103–104, the single well flow pressure and oil production were perfectly matched with the real data. In addition, connected units with more prominent high-speed non-Darcy features were found to have better connectivity, which might shed light on the more accurate prediction of inter-well connectivity. Moreover, an improved injection-production well pattern and was proposed based on connectivity prediction model and reservoir engineering method to solve the problems of insufficient natural energy supply and overhigh oil production rate in Block S. Furthermore, the injection/production rate as well as the timing and cycle of water injection was predicted and optimized so as to better guide to site operations.


2021 ◽  
Author(s):  
Thivyashini Thamilyanan ◽  
Hasmizah Bakar ◽  
Irzee Zawawi ◽  
Siti Aishah Mohd Hatta

Abstract During the low oil price era, the ability to deliver a small business investment yet high monetary gains was the epitome of success. A marginal field with its recent success of appraisal drilling which tested 3000bopd will add monetary value if it is commercialized as early as possible. However, given its marginal Stock Tank Oil Initially in Place (STOIIP), the plan to develop this field become a real challenge to the team to find a fit-for-purpose investment to maximize the project value. Luxuries such as sand control, artificial lift and frequent well intervention need to be considered for the most cost-effective measures throughout the life of field ‘Xion’. During field development study, several development strategies were proposed to overcome the given challenges such as uncertainty of reservoir connectivity, no gas lift supply, limited footprint to cater surface equipment and potential sand production. Oriented perforation, Insitu Gas Lift (IGL), Pressure Downhole Gauge (PDG), Critical Drawdown Pressure (CDP) monitoring is among the approaches used to manage the field challenges will be discussed in this paper. Since there are only two wells required to develop this field, a minimum intervention well is the best option to improve the project economics. This paper will discuss the method chosen to optimize the well and completion strategy cost so that it can overcome the challenges mentioned above in the most cost-effective approach. Artificial lift will utilize the shallower gas reservoirs through IGL in comparison to conventional gas lift. Sand Production monitoring will utilize the PDG by monitoring the CDP. The perforation strategy will employ the oriented perforation to reduce the sand free drawdown limit compare to the full perforation strategy. The strategy to monitor production through PDG will also reduce the number of interventions to acquire pressure data in establishing reservoir connectivity for the second phase development through secondary recovery and reservoir pressure maintenance plan. This paper will also explain the innovative approaches adopted for this early monetization and fast track project which is only completed within 4 months. This paper will give merit to petroleum engineers and well completion engineers involved in the development of marginal fields.


Author(s):  
Jingyun Cheng ◽  
Peimin Cao

The disconnectable Floating Production Storage and Offloading system (FPSO) is one of the preferred solutions for the deepwater field in the harsh environment and far away from existing pipeline infrastructures. This paper presents a design of steel lazy wave riser (SLWR) system for an internal turret moored disconnectable FPSO in the Gulf of Mexico. The integrated systems of FPSO, disconnectable buoy, riser, and mooring are discussed while focusing on the design challenges of SLWR system. Due to the complexity of SLWR geometry, a systematic configuration approach is introduced based on buoy payload and riser performance criteria. The study includes the strength and fatigue analysis of production, gas export and water injection risers for the connected, disconnecting, and disconnected conditions. The sensitivity of buoy disconnecting due to vessel offset is also presented. It concludes that SLWR with disconnectable FPSO is a feasible and cost effective solution for deepwater field development in the Gulf of Mexico. The study demonstrates the importance of an integrated design approach, and provides guidance for configuring and design of future disconnectable systems with SLWRs.


2018 ◽  
Vol 140 (11) ◽  
Author(s):  
Kobra Pourabdollah

The gradual decline in the oil production rate of water flooded reservoirs leads to decrease in the profit of water flooding system. Although cyclic water injection (CWI) was introduced to reduce the descending trend of oil production in water flooded reservoirs, it must be optimized based upon the process parameters. The objective of this study is to develop all process design criteria based upon the real-time monitoring of CWI process in a naturally fractured reservoir having five producing wells and five injector wells completed in an Arab carbonated formation containing light crude oil (API = 42 deg). For this aim, a small pilot oil field was selected with water injection facilities and naturally producing oil wells and all data were collected from the field tests. During a five years' field test, the primary observations at the onset of shutdown periods of the water injection system revealed a repeatable significant enhancement in oil production rate by a factor of plus 5% leading us to assess the application of CWI. This paper represents the significant parameters of pressure and productivity affected during CWI in naturally fractured carbonate reservoirs based upon a dual porosity generalized compositional model. The results hopefully introduce other oil producer companies to the potential of using CWI to increase oil production in conventional water injection systems. The results also outline situations where such applications would be desirable.


2019 ◽  
Vol 16 (11) ◽  
pp. 4584-4588
Author(s):  
I. A. Pogrebnaya ◽  
S. V. Mikhailova

The work is devoted to identifying the most relevant geological and technical measures carried out in Severo-Ostrovnoe field from the period of its development to the present. Every year dozens of geotechnical jobs (GJ) are carried out at each oil field-works carried out at wells to regulate the development of fields and maintain target levels of oil production. Today, there are two production facilities in the development of the Severo-Ostrovnoe field: UV1a1 and BV5. With the help of geotechnical jobs, oil-producing enterprises ensure the fulfillment of project indicators of field development (Mikhailov, N.N., 1992. Residual Oil Saturation of Reservoirs Under Development. Moscow, Nedra. p.270; Good, N.S., 1970. Study of the Physical Properties of Porous Media. Moscow, Nedra. p.208). In total, during the development of the Severo-Ostrovnoe field, 76 measures were taken to intensify oil production and enhance oil recovery. 12 horizontal wells were drilled (HW with multistage fracking (MSF)), 46 hydraulic fracturing operations were performed, 12 hydraulic fracturing operations were performed at the time of withdrawal from drilling (HW with MSF), five sidetracks were cut; eight physic-chemical BHT at production wells; five optimization of well operation modes. The paper analyzes the performed geological and technical measures at the facilities: UV1a1∦BV5 of the Severo-Ostrovnoe field. Four types of geological and technical measures were investigated: hydraulic fracturing, drilling of sidetracks with hydraulic fracturing, drilling of horizontal wells with multi-stage hydraulic fracturing, and physic-chemical optimization of the bottom-hole formation zone. It was revealed that two geotechnical jobs, namely, formation hydraulic fracturing (FHF) and drilling of lateral shafts in the Severo-Ostrovnoe field are the most highly effective methods for intensifying reservoir development and increasing oil recovery. SXL was conducted at 5 wells. The average oil production rate is 26.6 tons per day, which is the best indicator. Before this event, the production rate of the well was 2.1 tons per day. Currently, the effect of ongoing activities continues.


2001 ◽  
Vol 4 (01) ◽  
pp. 26-35
Author(s):  
Richard W. Smith ◽  
Rodolfo Colmenares ◽  
Eulalio Rosas ◽  
Isaura Echeverria

Summary The El Furrial field is one of Venezuela's major field assets and is operated by PDVSA (Petroleos de Venezuela, S.A.), the national oil company. Its current production of more than 450,000 BOPD makes it a giant oil field. Development of the field, which has an average reservoir depth of approximately 15,000 ft, is in its mature stages owing to implementation of high-pressure gas injection. PDVSA has consistently followed a forward planning approach related to reservoir management. Using high-angle deviation drilling techniques allows development wells to be strategically located by penetrating the reservoir at high angles to optimize production rate, extend well life, increase reserves per well, reduce operating expenses, and reduce total field development costs. A reservoir model was constructed and simulated with detailed reservoir stratigraphy to determine realistic potential of high-angle wells (HAW's). Five wells had been drilled as of June 2000, and the first four wells have proved the effectiveness of the design. The philosophy, modeling technique, well design considerations, problems encountered, well results, and economic criteria provide a clear understanding of the risk of this technology not previously used at this depth in Venezuela. The result was the first HAW in the deep, challenging environment of eastern Venezuela. Results show that optimization objectives can be attained with HAW's, mainly increasing per-well production rate, maximizing per-well recovery, and extending the breakthrough time of gas or water from pressure maintenance and enhanced oil recovery projects. Well results indicate that the geological and simulation modeling technique is reliable and accurate. A pilot program shows that HAW technology provides major advantages to increase production rate and reduce the overall number of wells needed to reach production objectives. However, the project also has experienced a number of unexpected drilling problems.1 The costs associated with the total project are significant, but more importantly, this program becomes very attractive because of the long-term benefits of decreased water-cut related to current water injection; decreased gas breakthrough owing to high-pressure gas injection, and fewer wells required to meet production goals. Technical contributions include the following:The modeling technique of applying detailed stratigraphy to a full-scale reservoir model is accurate if performed with the appropriate objectives in mind.The application of state-of-the-art drilling techniques to attain high angles at deep drilling depth is possible; however, drilling problems caused by formation instability require more study and experience.This method can be applied to other fields in the eastern Venezuelan basin currently under, or planned to be under, enhanced recovery programs and development programs. Introduction The El Furrial field is one of several giant fields found northwest of Maturin, Venezuela, in what is described as the El Furrial thrust trend (location shown in Fig. 1). The field was discovered in 1986 with the FUL-1 well, which established production from the Naricual formation. A late 1996 study, using a full-field simulation model of the El Furrial field, showed that problems associated with gas or water breakthrough in producing wells from high-pressure gas injection and water injection can be reduced with this technology. The potential to reduce problems comes from drilling infill wells at a high angle between the advancing gas and water fronts. High-pressure gas injection was started in 1998 and was justified, in part, by this work and other associated studies. The field produces from two formations, the Naricual and Los Jabillos, giving a total gross thickness of more than 1,500 ft. The primary 1,200-ft-thick Naricual formation is divided into three major stratigraphic sequences - the Superior (upper), Medio (middle), and Inferior (lower). Net-to-gross ratio is typically 80%. Philosophy PDVSA has consistently maintained reservoir models through the years to aid in reservoir management.2 To date, eight full-field and numerous sector-simulation models have been built. Optimization of the field began in 1996. During the study, it was noted that predictions of conventional vertical infill wells drilled into the structure had short production lives because of water or gas breakthrough. The review identified the possibility of placing well trajectories between the advancing water and gas fronts. One benefit was that the production rate from new wells could be increased; this indicated that the number of development wells could be reduced, saving investment costs. Thus, the following objectives were determined.Define optimization alternatives of the El Furrial field well-development scheme. The use of nonconventional well completions such as vertical large interval single completions (LISC) and high-angle completion (HAC) wells may present a higher potential for meeting production needs at a lower total development cost.Define the most reasonable completion configuration for new wells in El Furrial field. It is probable that the entire Naricual acts as a single reservoir unit, with at least partial vertical communication existing in the majority of the field caused by fault juxtaposition and limited fractures associated with faults. Therefore, single completions in all of Naricual Superior and Medio, or Naricual Medio and Inferior, may present viable completion alternatives.Provide technical support to the Venezuelan Ministry of Mines and Energy, which approves operation philosophy, development, and completion practices. The HAW program was different from the previous accepted philosophy, so technical support was necessary to permit the FUL-63 pilot test well. High-Angle Wells This work was split into two parts. The first was an evaluation of HAC wells as an alternative to current vertical-well strategies. This includes the possible alternative of LISC completions for all of Naricual Superior and Medio. The second was additional simulation cases to test the potential development plan with only HAC wells in a full-scale reservoir model.


2012 ◽  
Vol 594-597 ◽  
pp. 2442-2445 ◽  
Author(s):  
Ji Cheng Zhang ◽  
Ying Jia ◽  
Xiao Na Cui

Water injection is one of the important ways to maintain reservoir pressure and improving the oilfield development effect. And separate zone water injection is the main technology in water flooding oilfield. The optimal water intensity which has been allocated plays an important role in all kinds of reservoir. This paper proposed a method to optimize the water injection intensity based on oil production rate and water cut. Conceptual model was constructed on the basis of real reservoir. By numerical simulation, a chart board was derived which describes the relationship of water injection intensity versus oil production rate and water cut. Using this chart, we can determine the optimal water injection intensity on different oil production rate and water cut.


Sign in / Sign up

Export Citation Format

Share Document