New Recommendations for Offshore Wellhead Platform Structural Design Due to Well Conductor Casings Failures: Outcome of a Study Based on Actual Findings

2021 ◽  
Author(s):  
Abdul Gaffur Varikkodan ◽  
Anjan Sarkar ◽  
Mohammed Eissa Mohammed

Abstract Detailed study on structurally failed well conductors on offshore wellhead platforms lead us to believe that existing assumptions of conductors transfer only lateral loadings to wellhead platforms while entire well vertical loading will be carried by conductor itself; could be wrong. The well conductors could become ‘forced’ to carry a very large vertical loads incase the conductors are structurally failed; especially once exceeded its original design life. As such, some new considerations during the wellhead platform design, which need to be followed, are recommended here. These are to cater any catastrophic eventuality of conductor failures which will restrain further collapse of the conductors or to avoid any progressive collapse of the platform. The recommendations are from a study based on actual findings observed recently in the offshore field. The connection between conductors and platforms are conventionally designed as guided based on the load transfer assumptions. That is the huge vertical loadings from internal conductor casings and associated items were not a concern for platform design structural engineers, traditionally, and as such the conductors were designed to be structurally connected to the wellhead platforms using vertical guides. Due to extended design service life of platforms, in many cases the design life went up to two times of their original design life, severe degradation of structural integrity of the conductors were observed in the field. Structural analysis and assessment were carried out on many old intact and failed conductors, in the offshore field, in order to assess its structural and loading behavior with respect to supporting wellhead platforms. The study provided that the failed conductors were leaning / collapsing to the wellhead platform resulting in transferring a huge vertical loads which originally were designed to be carried by conductors alone. This huge transfer of vertical loads from conductor to the platform was unexpected and was not considered in platforms original design. Therefore, the platform should have sufficient structural strength to cater such extreme eventuality to avoid the risk of complete collapse. A risk assessment of a tilted / failed conductors indicated that the consequence of total failure of a conductor could be catastrophic in case the platform failed to resist the collapsing conductors. This paper presents the details of the study carried out on aged wellhead platforms, having failed long serving conductors, in Giant offshore field, Abu Dhabi, along with details of new recommendations to be followed while designing new wellhead platforms. The paper also recommends the structural design consideration to be followed while designing wellhead platforms in-case a conductor repair is necessitated in future.

Author(s):  
Abe Nezamian ◽  
Joshua Altmann

The ageing of offshore infrastructure presents a constant and growing challenge for operators. Ageing is characterised by deterioration, change in operational conditions or accidental damages which, in the severe operational environment offshore, can be significant with serious consequences for installation integrity if not managed adequately and efficiently. An oil field consisting of twelve well head platforms, a living quarter platform (XQ), a flare platform (XFP) and a processing platform (XPA) are the focus of this paper, providing an overview of the integrity assessment process. In order to ensure technical and operational integrity of these ageing facilities, the fitness for service of these offshore structures needs to be maintained. Assessments of the structural integrity of thirteen identified platforms under existing conditions were undertaken as these platforms are either nearing the end of their design life or have exceeded more than 50% of their design life. Information on history, characteristic data, condition data and inspection results were collected to assess the current state and to predict the future state of the facility for possible life extension. The information included but was not limited to as built data, brown fields modifications, additional risers and clamp-on conductors and incorporation of subsea and topside inspection findings. In-service integrity assessments, pushover analyses, corrosion control and cathodic protection assessments and weight control reports were completed to evaluate the integrity of these facilities for requalification to 2019 and life extension to 2030. The analytical models and calculations were updated based on the most recent inspection results and weight control reports. A requalification and life extension report was prepared for each platform to outline the performance criteria acceptance to achieve requalification until 2019 and life extension until 2030. This paper documents the methodology to assess the platform structural integrity in order to evaluate platform integrity for the remaining and extended design life. An overview of various aspects of ageing related to these offshore facilities, representing risk to the integrity, the required procedures and re assessment criteria for deciding on life extension of these facilities is presented. This paper also provides an overall view of the structural requirements, justifications and calibrations of the original design for the life extension to maintain the safety level by means of maintenance and inspection programs balancing the ageing mechanisms and improving the reliability of assessment results.


Author(s):  
A. Stacey ◽  
M. Birkinshaw ◽  
J. V. Sharp

With many offshore installations in the UK sector of the North Sea now reaching or being in excess of their original anticipated design life, there is a particular need to evaluate approaches to structural integrity management by offshore operators. Ageing processes can affect the structural integrity of the installation and demonstration of adequate performance beyond its original design life is thus a necessary requirement. This paper addresses the issues relevant to the life extension of ageing installations.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Qing-liang Zeng ◽  
Zhao-sheng Meng ◽  
Li-rong Wan ◽  
Cheng-long Wang

To study the load transfer characteristics of a two-legged shield powered support, a numerical simulation model of the support was established using the multibody dynamics software ADAMS. The model took full account of the hydraulic-elastic deformation characteristics of the support, as a series spring-damper system was used to replace the leg and the equilibrium jack. The canopy, goaf shield, lemniscate bars, and equilibrium jack are equivalent to flexible bodies. The setting force of the leg was provided by the preload of the equivalent spring, the static roof load was simulated using a slope signal, and the impact load was simulated using a step signal. Using the model, the impact and excitation effects of each hinge joint of the support were analyzed under different impact load conditions across the canopy. The results show that the location of the impact load affects the force transmissions of all hinge points of the support. Both the impact effect and the excitation effect are at a minimum when the impact force is located near the leg action line. These results are useful for the adaptive control and structural design optimization of the support.


2016 ◽  
Vol 711 ◽  
pp. 982-988
Author(s):  
Alex Brodsky ◽  
David Z. Yankelevsky

Numerous studies have been conducted on the in plane behavior of masonry infill walls to lateral loading simulating earthquake action on buildings. The present study is focused on a problem that has almost not been studied regarding the vertical (opposed to lateral) in-plane action on these walls. This may be of concern when a supporting column of a multi-storey reinforced concrete frame with infill masonry walls undergoes a severe damage due to an extreme loading such as a strong earthquake, car impact or military or terror action in proximity to the column. The loss of the supporting column may cause a fully or partly progressive collapse to a bare reinforced concrete frame, without infill masonry walls. The presence of the infill masonry walls may restrain the process and prevent the development of a progressive collapse. The aim of the present study is to test the in-plane composite action of Reinforced Concrete (RC) frames with infill masonry walls under vertical loading through laboratory experiments and evaluate the contributions of infill masonry walls, in an attempt to examine the infill masonry wall added resistance to the bare frame under these circumstances. Preliminary results of laboratory tests that have been conducted on reinforced concrete infilled frames without a support at their end, under monotonic vertical loading along that column axis will be presented. The observed damages and failure modes under vertical loading are clearly different from the already known failure modes observed in the case of lateral loading.


2014 ◽  
Author(s):  
Upendra Malla ◽  
Krishna M. Karri

Floating Production Storage and Offloading (FPSO) sizing and cost estimation has become a challenging task at the early stages of offshore field development. During the early stages of field development designer needs to size and estimate cost in order to decide feasibility of the project. This paper describes a step by step method used to size and estimate the cost of a new built (or) converted FPSO based on basic engineering, existing FPSO data and corresponding metocean criteria for a particular location. This step by step approach covers FPSO sizing, hull structural design, mooring sizing, topsides support design and steel renewal using offshore classification rules and regulations. FPSO cost is estimated based on the design particulars (i.e. hull weights, FPSO particulars, mooring sizes etc.) and current market unit rates. This approach is an effective means to size and estimate cost of an FPSO at early stages of field development which saves overall time and cost for a client.


2021 ◽  
Author(s):  
Biramarta Isnadi ◽  
Luong Ann Lee ◽  
Sok Mooi Ng ◽  
Ave Suhendra Suhaili ◽  
Quailid Rezza M Nasir ◽  
...  

Abstract The objective of this paper is to demonstrate the best practices of Topside Structural Integrity Management for an aging fleet of more than 200 platforms with about 60% of which has exceeded the design life. PETRONAS as the operator, has established a Topside Structural Integrity Management (SIM) strategy to demonstrate fitness of the offshore topside structures through a hybrid philosophy of time-based inspection with risk-based maintenance, which is in compliance to API RP2SIM (2014) inspection requirements. This paper shares the data management, methodology, challenges and value creation of this strategy. The SIM process adopted in this work is in compliance with industry standards API RP2SIM, focusing on Data-Evaluation-Strategy-Program processes. The operator HSE Risk Matrix is adopted in risk ranking of the topside structures. The main elements considered in developing the risk ranking of the topside structures are the design and assessment compliance, inspection compliance and maintenance compliance. Effective methodology to register asset and inspection data capture was developed to expedite the readiness of Topside SIM for a large aging fleet. The Topside SIM is being codified in the operator web-based tool, Structural Integrity Compliance System (SICS). Identifying major hazards for topside structures were primarily achieved via data trending post implementation of Topside SIM. It was then concluded that metal loss as the major threat. Further study on effect of metal loss provides a strong basis to move from time-based maintenance towards risk-based maintenance. Risk ranking of the assets allow the operator to prioritize resources while managing the risk within ALARP level. Current technologies such as drone and mobile inspection tools are deployed to expedite inspection findings and reporting processes. The data from the mobile inspection tool is directly fed into the web based SICS to allow reclassification of asset risk and anomalies management.


2003 ◽  
Vol 40 (01) ◽  
pp. 42-48
Author(s):  
Chang Doo Jang ◽  
Ho Kyung Kim ◽  
Ha Cheol Song

A surface effect ship is known to be comparable to a high-speed ship. For the structural design of surface effect ships, advanced design methods are needed which can reflect the various loading conditions different from those of conventional ships. Also, minimum weight design is essential because hull weight significantly affects the lift, thrust powering and high-speed performance. This paper presents the procedure of optimum structural design and a computer program to minimize the hull weight of surface effect ships built of composite materials. By using the developed computer program, the optimum structural designs for three types of surface effect ships—built of sandwich plate only, stiffened single skin plate only, and both plates—are carried out and the efficiency of each type is investigated in terms of weight. The computer program, developed herein, successfully reduced the hull weight of surface effect ships by 15–30% compared with the original design. Numerical results of optimum structural designs are presented and discussed.


Author(s):  
Se-Kwon Jung ◽  
Adam Goodman ◽  
Joe Harrold ◽  
Nawar Alchaar

This paper presents a three-tier, critical section selection methodology that is used to identify critical sections for the U.S. EPR™ Standard Nuclear Power Plant (NPP). The critical section selection methodology includes three complementary approaches: qualitative, quantitative, and supplementary. These three approaches are applied to Seismic Category I structures in a complementary fashion to identify the most critical portions of the building whose structural integrity needs to be maintained for postulated design basis events and conditions. Once the design of critical sections for a particular Seismic Category I structure is complete, the design for that structure is essentially complete for safety evaluation purposes. Critical sections, taken as a whole, are analytically representative of an “essentially complete” U.S. EPR™ design; their structural design adequacy provides reasonable assurance of overall U.S. EPR™ structural design adequacy.


Author(s):  
John V. Sharp ◽  
Edmund G. Terry ◽  
John Wintle

Many offshore installations in the North Sea have now exceeded their original design life and are in a life extension phase. A Framework of six processes has been developed for the management of ageing of Safety Critical Elements (SCEs) in offshore installations. The processes include an analysis of the effect of ageing modes on SCE performance. Examples of performance indicators for typical SCEs are proposed based on how their condition and performance as may be affected by physical deterioration and other effects of ageing. Indicators for calibrating the maturity and effectiveness of the management processes are also suggested.


Sign in / Sign up

Export Citation Format

Share Document