scholarly journals Serum proteomics analysis reveals the thermal fitness of dairy buffalo to chronic heat stress

2019 ◽  
Author(s):  
Liu Ping ◽  
Guo Lulu ◽  
Mao Huaming ◽  
Gu Zhaobing

Abstract Background: Chronic heat stress (CHS), aggravated by global warming, reduces the production efficiency of the buffalo dairy industry. CHS changes protein abundance, and low-abundant proteins take important roles in biological processes. Results: The objective of the study was to assess differences in low-abundant serum proteins in dairy buffaloes at thermoneutral (TN) or under chronic heat stress (CHS) conditions with proteomic approaches. Six dairy buffaloes as reference animal raised in TN season, and another six dairy buffaloes raised in CHS to discover the molecular mechanism of thermal fitness in hot season with serum proteomics. After the removal of multiple high-abundant proteins in serum, 344 low-abundant proteins were identified in serum with label-free quantification. Of these, 17 low-abundant differentially expressed serum proteins with known functions were detected, and five of these differentially expressed proteins were validated with parallel reaction monitoring. These five proteins were associated with various aspects of heat stress, including decreased heat production, increased blood oxygen delivery, and enhanced natural disease resistance. Conclusions: Lipase (LPL), glutathione peroxidase 3 (GPX3), cathelicidin-2 (CATHL2), ceruloplasmin (CP), and hemoglobin subunit alpha 1 (HBA1) were shown to play cooperative roles in CHS fitness in dairy buffalo. Dairy buffaloes adapt to CHS and hypoxia with high levels of RBCs, HBA1 and CP increased blood oxygen delivery capacity and thermal fitness.

Author(s):  
Zhaobing Gu ◽  
Shoukun Tang ◽  
Xianhai Fu ◽  
Chuanbin Liu ◽  
Huaming Mao

Chronic heat stress (HS), aggravated by global warming, reduces the production efficiency of the buffalo dairy industry. Here, we conducted a proteomic analysis to investigate the adaptation strategies used by buffalo in response to heat stress. Seventeen differentially abundant proteins with known functions were detected using label-free quantification (LFQ), and five of these differentially expressed proteins were validated with parallel reaction monitoring (PRM). These five proteins were associated with various aspects of heat stress, including decreased heat production, increased blood oxygen delivery, and enhanced natural disease resistance. Lipase (LPL), glutathione peroxidase 3 (GPX3), cathelicidin-2 (CATHL2, LL-37), ceruloplasmin (CP), and hemoglobin subunit alpha 1 (HBA1) were shown to play cooperative roles in the tolerance of chronic HS in dairy buffalo. We found that high levels of HBA1 increased blood oxygen transport capacity. Our results increase our understanding of the adaptation of dairy buffalo to chronic heat stress.


2021 ◽  
Author(s):  
Jianhua Li ◽  
Lin Lu ◽  
Xinping Xie ◽  
Xiaofeng Dai ◽  
Lihong Chen ◽  
...  

Abstract Purpose The purpose of this study was to screen serum proteins for biomarkers of gestational diabetes mellitus (GDM) and to investigate its pathogenesis by analyzing the differences in serum proteomics between pregnant women with GDM and healthy pregnant women. Methods High performance liquid chromatography-mass spectrometry was used to identify differentially expressed serum proteins between pregnant women with GDM and healthy pregnant women, and bioinformatics analysis was then performed on the identified proteins. Results A total of 1152 quantifiable proteins were detected; among them, 15 were up-regulated in the serum of GDM pregnant women, while 26 were down-regulated. The subsequent parallel reaction monitoring (PRM) assay validated the expression levels of 12 out of 41 differentially expressed proteins. Moreover, bioinformatics analysis revealed that the differentially expressed proteins are involved in multiple biological processes and signaling pathways related to lipid metabolism, glycan degradation, immune response, and platelet aggregation. Conclusions This study identified 41 serum proteins with differential expression between pregnant women with GDM and healthy pregnant women, providing new candidate molecules for elucidating GDM pathogenesis and screening therapeutic targets.


2019 ◽  
Vol 39 (5) ◽  
Author(s):  
Guangying Zhang ◽  
Kun Zhang ◽  
Chao Li ◽  
Yanyan Li ◽  
Zhanzhan Li ◽  
...  

Abstract Radiotherapy is the primary treatment option for nasopharyngeal carcinoma (NPC). Local recurrence and metastasis caused by radioresistance become a bottleneck of curative effect for patients with NPC. Currently, serum predictive biomarkers of radioresistance are scare. We enrolled NPC patients, who underwent radiotherapy in the Department of Oncology, Xiangya Hospital, Central Southern University, and analyzed the serum proteins profiles in NPC patients using with quantitative label-free proteomics using ultra-definition MS. Patients were divided into those who were radioresistant and radiosensitive by the overall reduction (≤50% or >50%, respectively) in tumor extent. The MS/MS spectrum database search identified 911 proteins and 809 proteins are quantitatable. Eight proteins significantly up-regulated and 12 serum proteins were significantly down-regulated in the radioresistance group compared with radiosensitivity group (P<0.05). Finally, five proteins entered the optimal models, including secreted protein acidic and cysteine rich (SPARC) (P=0.032), serpin family D member 1S (ERPIND1) (P=0.040), complement C4B (C4B) (P=0.017), peptidylprolyl Isomerase B (PPIB) (P=0.042), and family with sequence similarity 173 member A (FAM173A) (P=0.017). In all patient, the area under the curves (AUC) for SPARC, SERPIND, C4B, PPIB, and FAM173A were 0.716 (95% CI: 0.574–0.881), 0.697 (95% CI: 0.837–0.858), 0.686 (95% CI: 0.522–0.850), 0.668 (95% CI: 0.502–0.834) and 0.657 (95% CI: 0.512–0.825), respectively. The AUC of five selected proteins was 0.968 (95% CI: 0.918–1.000) with the sensitivity of 0.941 and the specificity of 0.926. Our result indicated that a panel including five serum protein (SPARC SERPIND1 C4B PPIB FAM173A) based on serum proteomics provided a high discrimination ability for radiotherapy effects in NPC patients. Studies with larger sample size and longer follow-up outcome are required.


2019 ◽  
Vol 20 (12) ◽  
pp. 3096 ◽  
Author(s):  
Marta Sikora ◽  
Izabela Lewandowska ◽  
Małgorzata Kupc ◽  
Jolanta Kubalska ◽  
Ałła Graban ◽  
...  

Ischemic stroke induces brain injury via thrombotic or embolic mechanisms involving large or small vessels. Cystathionine β-synthase deficiency (CBS), an inborn error of metabolism, is associated with vascular thromboembolism, the major cause of morbidity and mortality in affected patients. Because thromboembolism involves the brain vasculature in these patients, we hypothesize that CBS deficiency and ischemic stroke have similar molecular phenotypes. We used label-free mass spectrometry for quantification of changes in serum proteomes in CBS-deficient patients (n = 10) and gender/age-matched unaffected controls (n = 14), as well as in patients with cardioembolic (n = 17), large-vessel (n = 26), or lacunar (n = 25) ischemic stroke subtype. In CBS-deficient patients, 40 differentially expressed serum proteins were identified, of which 18 were associated with elevated homocysteine (Hcy) and 22 were Hcy-independent. We also identified Hcy-independent differentially expressed serum proteins in ischemic stroke patients, some of which were unique to a specific subtype: 10 of 32 for cardioembolic vs. large-vessel, six of 33 for cardioembolic vs. lacunar, and six of 23 for large-vessel vs. lacunar. There were significant overlaps between proteins affected by CBS deficiency and ischemic stroke, particularly the cardioembolic subtype, similar to protein overlaps between ischemic stroke subtypes. Top molecular pathways affected by CBS deficiency and ischemic stroke subtypes included acute phase response signaling and coagulation system. Similar molecular networks centering on NFκB were affected by CBS deficiency and stroke subtypes. These findings suggest common mechanisms involved in the pathologies of CBS deficiency and ischemic stroke subtypes.


2008 ◽  
Vol 44 ◽  
pp. 63-84 ◽  
Author(s):  
Chris E. Cooper

Optimum performance in aerobic sports performance requires an efficient delivery to, and consumption of, oxygen by the exercising muscle. It is probable that maximal oxygen uptake in the athlete is multifactorial, being shared between cardiac output, blood oxygen content, muscle blood flow, oxygen diffusion from the blood to the cell and mitochondrial content. Of these, raising the blood oxygen content by raising the haematocrit is the simplest acute method to increase oxygen delivery and improve sport performance. Legal means of raising haematocrit include altitude training and hypoxic tents. Illegal means include blood doping and the administration of EPO (erythropoietin). The ability to make EPO by genetic means has resulted in an increase in its availability and use, although it is probable that recent testing methods may have had some impact. Less widely used illegal methods include the use of artificial blood oxygen carriers (the so-called ‘blood substitutes’). In principle these molecules could enhance aerobic sports performance; however, they would be readily detectable in urine and blood tests. An alternative to increasing the blood oxygen content is to increase the amount of oxygen that haemoglobin can deliver. It is possible to do this by using compounds that right-shift the haemoglobin dissociation curve (e.g. RSR13). There is a compromise between improving oxygen delivery at the muscle and losing oxygen uptake at the lung and it is unclear whether these reagents would enhance the performance of elite athletes. However, given the proven success of blood doping and EPO, attempts to manipulate these pathways are likely to lead to an ongoing battle between the athlete and the drug testers.


2019 ◽  
Vol 17 ◽  
Author(s):  
Xiaoli Yu ◽  
Lu Zhang ◽  
Na Li ◽  
Peng Hu ◽  
Zhaoqin Zhu ◽  
...  

Aim: We aimed to identify new plasma biomarkers for the diagnosis of Pulmonary tuberculosis. Background: Tuberculosis is an ancient infectious disease that remains one of the major global health problems. Until now, effective, convenient, and affordable methods for diagnosis of Pulmonary tuberculosis were still lacked. Objective: This study focused on construct a label-free LC-MS/MS based comparative proteomics between six tuberculosis patients and six healthy controls to identify differentially expressed proteins (DEPs) in plasma. Method: To reduce the influences of high-abundant proteins, albumin and globulin were removed from plasma samples using affinity gels. Then DEPs from the plasma samples were identified using a label-free Quadrupole-Orbitrap LC-MS/MS system. The results were analyzed by the protein database search algorithm SEQUEST-HT to identify mass spectra to peptides. The predictive abilities of combinations of host markers were investigated by general discriminant analysis (GDA), with leave-one-out cross-validation. Results: A total of 572 proteins were identified and 549 proteins were quantified. The threshold for differentially expressed protein was set as adjusted p-value < 0.05 and fold change ≥1.5 or ≤0.6667, 32 DEPs were found. ClusterVis, TBtools, and STRING were used to find new potential biomarkers of PTB. Six proteins, LY6D, DSC3, CDSN, FABP5, SERPINB12, and SLURP1, which performed well in the LOOCV method validation, were termed as potential biomarkers. The percentage of cross-validated grouped cases correctly classified and original grouped cases correctly classified is greater than or equal to 91.7%. Conclusion: We successfully identified five candidate biomarkers for immunodiagnosis of PTB in plasma, LY6D, DSC3, CDSN, SERPINB12, and SLURP1. Our work supported this group of proteins as potential biomarkers for pulmonary tuberculosis, and be worthy of further validation.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Huiyi Song ◽  
Ni Lou ◽  
Jianjun Liu ◽  
Hong Xiang ◽  
Dong Shang

Abstract Background Escherichia coli (E. coli) is the principal pathogen that causes biofilm formation. Biofilms are associated with infectious diseases and antibiotic resistance. This study employed proteomic analysis to identify differentially expressed proteins after coculture of E. coli with Lactobacillus rhamnosus GG (LGG) microcapsules. Methods To explore the relevant protein abundance changes after E. coli and LGG coculture, label-free quantitative proteomic analysis and qRT-PCR were applied to E. coli and LGG microcapsule groups before and after coculture, respectively. Results The proteomic analysis characterised a total of 1655 proteins in E. coli K12MG1655 and 1431 proteins in the LGG. After coculture treatment, there were 262 differentially expressed proteins in E. coli and 291 in LGG. Gene ontology analysis showed that the differentially expressed proteins were mainly related to cellular metabolism, the stress response, transcription and the cell membrane. A protein interaction network and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis indicated that the differentiated proteins were mainly involved in the protein ubiquitination pathway and mitochondrial dysfunction. Conclusions These findings indicated that LGG microcapsules may inhibit E. coli biofilm formation by disrupting metabolic processes, particularly in relation to energy metabolism and stimulus responses, both of which are critical for the growth of LGG. Together, these findings increase our understanding of the interactions between bacteria under coculture conditions.


2021 ◽  
Vol 22 (5) ◽  
pp. 2481
Author(s):  
Jodi Callwood ◽  
Kalpalatha Melmaiee ◽  
Krishnanand P. Kulkarni ◽  
Amaranatha R. Vennapusa ◽  
Diarra Aicha ◽  
...  

Blueberries (Vaccinium spp.) are highly vulnerable to changing climatic conditions, especially increasing temperatures. To gain insight into mechanisms underpinning the response to heat stress, two blueberry species were subjected to heat stress for 6 and 9 h at 45 °C, and leaf samples were used to study the morpho-physiological and transcriptomic changes. As compared with Vaccinium corymbosum, Vaccinium darrowii exhibited thermal stress adaptation features such as small leaf size, parallel leaf orientation, waxy leaf coating, increased stomatal surface area, and stomatal closure. RNAseq analysis yielded ~135 million reads and identified 8305 differentially expressed genes (DEGs) during heat stress against the control samples. In V. corymbosum, 2861 and 4565 genes were differentially expressed at 6 and 9 h of heat stress, whereas in V. darrowii, 2516 and 3072 DEGs were differentially expressed at 6 and 9 h, respectively. Among the pathways, the protein processing in the endoplasmic reticulum (ER) was the highly enriched pathway in both the species: however, certain metabolic, fatty acid, photosynthesis-related, peroxisomal, and circadian rhythm pathways were enriched differently among the species. KEGG enrichment analysis of the DEGs revealed important biosynthesis and metabolic pathways crucial in response to heat stress. The GO terms enriched in both the species under heat stress were similar, but more DEGs were enriched for GO terms in V. darrowii than the V. corymbosum. Together, these results elucidate the differential response of morpho-physiological and molecular mechanisms used by both the blueberry species under heat stress, and help in understanding the complex mechanisms involved in heat stress tolerance.


Author(s):  
Christoph Stingl ◽  
Angela Bureo Gonzalez ◽  
Coşkun Güzel ◽  
Kai Yi Nadine Phoa ◽  
Michail Doukas ◽  
...  

Abstract Background Barrett’s esophagus (BE) is a known precursor lesion and the strongest risk factor for esophageal adenocarcinoma (EAC), a common and lethal type of cancer. Prediction of risk, the basis for efficient intervention, is commonly solely based on histologic examination. This approach is challenged by problems such as inter-observer variability in the face of the high heterogeneity of dysplastic tissue. Molecular markers might offer an additional way to understand the carcinogenesis and improve the diagnosis—and eventually treatment. In this study, we probed significant proteomic changes during dysplastic progression from BE into EAC. Methods During endoscopic mucosa resection, epithelial and stromal tissue samples were collected by laser capture microdissection from 10 patients with normal BE and 13 patients with high-grade dysplastic/EAC. Samples were analyzed by mass spectrometry-based proteomic analysis. Expressed proteins were determined by label-free quantitation, and gene set enrichment was used to find differentially expressed pathways. The results were validated by immunohistochemistry for two selected key proteins (MSH6 and XPO5). Results Comparing dysplastic/EAC to non-dysplastic BE, we found in equal volumes of epithelial tissue an overall up-regulation in terms of protein abundance and diversity, and determined a set of 226 differentially expressed proteins. Significantly higher expressions of MSH6 and XPO5 were validated orthogonally and confirmed by immunohistochemistry. Conclusions Our results demonstrate that disease-related proteomic alterations can be determined by analyzing minute amounts of cell-type-specific collected tissue. Further analysis indicated that alterations of certain pathways associated with carcinogenesis, such as micro-RNA trafficking, DNA damage repair, and spliceosome activity, exist in dysplastic/EAC.


Sign in / Sign up

Export Citation Format

Share Document