scholarly journals Differential Morpho-Physiological and Transcriptomic Responses to Heat Stress in Two Blueberry Species

2021 ◽  
Vol 22 (5) ◽  
pp. 2481
Author(s):  
Jodi Callwood ◽  
Kalpalatha Melmaiee ◽  
Krishnanand P. Kulkarni ◽  
Amaranatha R. Vennapusa ◽  
Diarra Aicha ◽  
...  

Blueberries (Vaccinium spp.) are highly vulnerable to changing climatic conditions, especially increasing temperatures. To gain insight into mechanisms underpinning the response to heat stress, two blueberry species were subjected to heat stress for 6 and 9 h at 45 °C, and leaf samples were used to study the morpho-physiological and transcriptomic changes. As compared with Vaccinium corymbosum, Vaccinium darrowii exhibited thermal stress adaptation features such as small leaf size, parallel leaf orientation, waxy leaf coating, increased stomatal surface area, and stomatal closure. RNAseq analysis yielded ~135 million reads and identified 8305 differentially expressed genes (DEGs) during heat stress against the control samples. In V. corymbosum, 2861 and 4565 genes were differentially expressed at 6 and 9 h of heat stress, whereas in V. darrowii, 2516 and 3072 DEGs were differentially expressed at 6 and 9 h, respectively. Among the pathways, the protein processing in the endoplasmic reticulum (ER) was the highly enriched pathway in both the species: however, certain metabolic, fatty acid, photosynthesis-related, peroxisomal, and circadian rhythm pathways were enriched differently among the species. KEGG enrichment analysis of the DEGs revealed important biosynthesis and metabolic pathways crucial in response to heat stress. The GO terms enriched in both the species under heat stress were similar, but more DEGs were enriched for GO terms in V. darrowii than the V. corymbosum. Together, these results elucidate the differential response of morpho-physiological and molecular mechanisms used by both the blueberry species under heat stress, and help in understanding the complex mechanisms involved in heat stress tolerance.

2019 ◽  
Vol 14 (7) ◽  
pp. 591-601 ◽  
Author(s):  
Aravind K. Konda ◽  
Parasappa R. Sabale ◽  
Khela R. Soren ◽  
Shanmugavadivel P. Subramaniam ◽  
Pallavi Singh ◽  
...  

Background: Chickpea is a nutritional rich premier pulse crop but its production encounters setbacks due to various stresses and understanding of molecular mechanisms can be ascribed foremost importance. Objective: The investigation was carried out to identify the differentially expressed WRKY TFs in chickpea in response to herbicide stress and decipher their interacting partners. Methods: For this purpose, transcriptome wide identification of WRKY TFs in chickpea was done. Behavior of the differentially expressed TFs was compared between other stress conditions. Orthology based cofunctional gene networks were derived from Arabidopsis. Gene ontology and functional enrichment analysis was performed using Blast2GO and STRING software. Gene Coexpression Network (GCN) was constructed in chickpea using publicly available transcriptome data. Expression pattern of the identified gene network was studied in chickpea-Fusarium interactions. Results: A unique WRKY TF (Ca_08086) was found to be significantly (q value = 0.02) upregulated not only under herbicide stress but also in other stresses. Co-functional network of 14 genes, namely Ca_08086, Ca_19657, Ca_01317, Ca_20172, Ca_12226, Ca_15326, Ca_04218, Ca_07256, Ca_14620, Ca_12474, Ca_11595, Ca_15291, Ca_11762 and Ca_03543 were identified. GCN revealed 95 hub genes based on the significant probability scores. Functional annotation indicated role in callose deposition and response to chitin. Interestingly, contrasting expression pattern of the 14 network genes was observed in wilt resistant and susceptible chickpea genotypes, infected with Fusarium. Conclusion: This is the first report of identification of a multi-stress responsive WRKY TF and its associated GCN in chickpea.


2018 ◽  
Vol 50 (2) ◽  
pp. 668-678 ◽  
Author(s):  
Wen-Qian Zhang ◽  
Miao Zhao ◽  
Ming-Yu Huang ◽  
Ji-Long Liu

Background/Aims: Embryo implantation is an essential process for eutherian pregnancy, but this process varies across eutherians. The genomic mechanisms that led to the emergence and diversification of embryo implantation are largely unknown. Methods: In this study, we analyzed transcriptomic changes during embryo implantation in mice and rats by using RNA-seq. Bioinformatics and evolutionary analyses were performed to characterize implantation-associated genes in these two species. Results: We identified a total of 518 differentially expressed genes in mouse uterus during implantation, of which 253 genes were up-regulated and 265 genes were down-regulated at the implantation sites compared with the inter-implantation sites. In rat uterus, there were 374 differentially expressed genes, of which 284 genes were up-regulated and 90 genes were down-regulated. A cross-species comparison revealed that 92 up-regulated genes and 20 down-regulated genes were shared. The differences and similarities between mice and rats were investigated further at the gene ontology, pathway, network, and causal transcription factor levels. Additionally, we found that embryo implantation might have evolved through the recruitment of ancient genes into uterine expression. The evolutionary rates of the differentially expressed genes in mouse and rat uterus were significantly lower than those of the non-changed genes, indicating that implantation-related genes are evolutionary conserved due to high selection pressure. Conclusion: Our study provides insights into the molecular mechanisms involved in the evolution of embryo implantation.


2021 ◽  
Author(s):  
Nana Yang ◽  
Qianghua Wang ◽  
Biao Ding ◽  
Yinging Gong ◽  
Yue Wu ◽  
...  

Abstract Background: The accumulation of ROS resulting from upregulated levels of oxidative stress is commonly implicated in preeclampsia (PE). Ferroptosis is a novel form of iron-dependent cell death instigated by lipid peroxidation likely plays important role in PE pathogenesis. This study aims to investigate expression profiles and functions of the ferroptosis-related genes (FRGs) in early- and late-onset preeclampsia.Methods: The gene expression data and clinical information were downloaded from GEO database. The “limma” R package was used for screening differentially expressed genes. GO(Gene Ontology), Kyoto Encyclopedia of Genes and Genomes(KEGG) and protein protein interaction (PPI) network analyses were conducted to investigate the bioinformatics functions and molecular interactions of significantly different FRGs. Quantitative real-time reverse transcriptase PCR was used to verify the expression of hub FRGs in PE.Results: A total number of 4,215 DEGs were identified between EOPE and preterm cases and 3,356 DEGs were found between EOPE and LOPE subtypes. 20 significantly different FRGs were identified in EOPE, while only 3 in LOPE. Functional enrichment analysis revealed that the differentially expressed FRGs was mainly involved in EOPE and enriched in hypoxia- and iron-related pathways, such as response to hypoxia, iron homeostasis and iron ion binding process. The PPI network analysis and verification by RT-qPCR resulted in the identification of the following six interesting FRGs: FTH1, HIF1A, FTL, IREB2, MAPK8 and PLIN2. Conclusions: EOPE and LOPE owned distinct underlying molecular mechanisms and ferroptosis may be mainly implicated in pathogenesis of EOPE. Further studies are necessary for deeper inquiry into placental ferroptosis and its role in the pathogenesis of EOPE.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Joon-Yung Cha ◽  
Sang-Ho Kang ◽  
Imdad Ali ◽  
Sang Cheol Lee ◽  
Myung Geun Ji ◽  
...  

Abstract Humic acid (HA) is composed of a complex supramolecular association and is produced by humification of organic matters in soil environments. HA not only improves soil fertility, but also stimulates plant growth. Although numerous bioactivities of HA have been reported, the molecular evidences have not yet been elucidated. Here, we performed transcriptomic analysis to identify the HA-prompted molecular mechanisms in Arabidopsis. Gene ontology enrichment analysis revealed that HA up-regulates diverse genes involved in the response to stress, especially to heat. Heat stress causes dramatic induction in unique gene families such as Heat-Shock Protein (HSP) coding genes including HSP101, HSP81.1, HSP26.5, HSP23.6, and HSP17.6A. HSPs mainly function as molecular chaperones to protect against thermal denaturation of substrates and facilitate refolding of denatured substrates. Interestingly, wild-type plants grown in HA were heat-tolerant compared to those grown in the absence of HA, whereas Arabidopsis HSP101 null mutant (hot1) was insensitive to HA. We also validated that HA accelerates the transcriptional expression of HSPs. Overall, these results suggest that HSP101 is a molecular target of HA promoting heat-stress tolerance in Arabidopsis. Our transcriptome information contributes to understanding the acquired genetic and agronomic traits by HA conferring tolerance to environmental stresses in plants.


Animals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1015 ◽  
Author(s):  
Shuangming Yue ◽  
Zhisheng Wang ◽  
Lizhi Wang ◽  
Quanhui Peng ◽  
Bai Xue

Heat stress (HS) exerts significant effects on the production of dairy animals through impairing health and biological functions. However, the molecular mechanisms related to the effect of HS on dairy cow milk production are still largely unknown. The present study employed an RNA-sequencing approach to explore the molecular mechanisms associated with a decline in milk production by the functional analysis of differentially expressed genes (DEGs) in mammary glands of cows exposed to HS and non-heat-stressed cows. The results of the current study reveal that HS increases the rectal temperature and respiratory rate. Cows under HS result in decreased bodyweight, dry matter intake (DMI), and milk yield. In the current study, a total of 213 genes in experimental cow mammary glands was identified as being differentially expressed by DEGs analysis. Among identified genes, 89 were upregulated, and 124 were downregulated. Gene Ontology functional analysis found that biological processes, such as immune response, chaperone-dependent refolding of protein, and heat shock protein binding activity, were notably affected by HS. The Kyoto Encyclopedia of Genes and Genomes enrichment analysis found that almost all of the top-affected pathways were related to immune response. Under HS, the expression of heat shock protein 90 kDa beta I (HSP90B1) and heat shock 70 kDa protein 1A was upregulated, while the expression of bovine lymphocyte antigen (BoLA) and histocompatibility complex, class II, DRB3 (BoLA-DRB3) was downregulated. We further explored the effects of HS on lactation-related genes and pathways and found that HS significantly downregulated the casein genes. Furthermore, HS increased the expression of phosphorylation of mammalian target of rapamycin, cytosolic arginine sensor for mTORC1 subunit 2 (CASTOR2), and cytosolic arginine sensor for mTORC1 subunit 1 (CASTOR1), but decreased the phosphorylation of Janus kinase-2, a signal transducer and activator of transcription factor-5. Based on the findings of DMI, milk yield, casein gene expression, and the genes and pathways identified by functional annotation analysis, it is concluded that HS adversely affects the immune function of dairy cows. These results will be beneficial to understand the underlying mechanism of reduced milk yield in HS cows.


Pathogens ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 479
Author(s):  
Jin He ◽  
Chaoliang Leng ◽  
Jiazhen Pan ◽  
Aoqi Li ◽  
Hua Zhang ◽  
...  

Porcine circovirus type 2 (PCV2) can cause severe disease in infected pigs, resulting in massive economic loss for the swine industry. Transcriptomic and proteomic approaches have been widely employed to identify the underlying molecular mechanisms of the PCV2 infection. Numerous differentially expressed mRNAs, miRNAs, and proteins, together with their associated signaling pathways, have been identified during PCV2 infection, paving the way for analysis of their biological functions. Long noncoding RNAs (lncRNAs) are important regulators of multiple biological processes. However, little is known regarding their role in the PCV2 infection. Hence, in our study, RNA-seq was performed by infecting PK-15 cells with PCV2. Analysis of the differentially expressed genes (DEGs) suggested that the cytoskeleton, apoptosis, cell division, and protein phosphorylation were significantly disturbed. Then, using stringent parameters, six lncRNAs were identified. Additionally, potential targets of the lncRNAs were predicted using both cis- and trans-prediction methods. Interestingly, we found that the HOXB (Homeobox B) gene cluster was probably the target of the lncRNA LOC106505099. Enrichment analysis of the target genes showed that numerous developmental processes were altered during PCV2 infection. Therefore, our study revealed that lncRNAs might affect porcine embryonic development through the regulation of the HOXB genes.


2016 ◽  
Vol 16 (1) ◽  
Author(s):  
Juan Ma ◽  
Rongyan Wang ◽  
Xiuhua Li ◽  
Bo Gao ◽  
Shulong Chen

Abstract The sweet potato weevil, Cylas formicarius (F.) (Coleoptera: Brentidae), is an important pest of sweet potato worldwide. However, there is limited knowledge on the molecular mechanisms underlying growth and differentiation of C. formicarius. The transcriptomes of the eggs, second instar larvae, third instar larvae (L3), pupae, females, and males of C. formicarius were sequenced using Illumina sequencing technology for obtaining global insights into developing transcriptome characteristics and elucidating the relative functional genes. A total of 54,255,544 high-quality reads were produced, trimmed, and de novo assembled into 115,281 contigs. 61,686 unigenes were obtained, with an average length of 1,009 nt. Among these unigenes, 17,348 were annotated into 59 Gene Ontology (GO) terms and 12,660 were assigned to 25 Cluster of Orthologous Groups classes, whereas 24,796 unigenes were mapped to 258 pathways. Differentially expressed unigenes between various developmental stages of C. formicarius were detected. Higher numbers of differentially expressed genes (DEGs) were recorded in the eggs versus L3 and eggs versus male samples (2,141 and 2,058 unigenes, respectively) than the others. Genes preferentially expressed in each stage were also identified. GO and pathway-based enrichment analysis were used to further investigate the functions of the DEGs. In addition, the expression profiles of ten DEGs were validated by quantitative real-time PCR. The transcriptome profiles presented in this study and these DEGs detected by comparative analysis of different developed stages of C. formicarius will facilitate the understanding of the molecular mechanism of various living process and will contribute to further genome-wide research.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Huairong Zhang ◽  
Bo Gao ◽  
Bingyin Shi

Aim. We aim to identify protein kinases involved in the pathophysiology of papillary thyroid carcinoma (PTC) in order to provide potential therapeutic targets for kinase inhibitors and unfold possible molecular mechanisms.Materials and Methods. The gene expression profile of GSE27155 was analyzed to identify differentially expressed genes and mapped onto human protein kinases database. Correlation of kinases with PTC was addressed by systematic literature search, GO and KEGG pathway analysis.Results. The functional enrichment analysis indicated that “mitogen-activated protein kinases pathway” expression was extremely enriched, followed by “neurotrophin signaling pathway,” “focal adhesion,” and “GnRH signaling pathway.” MAPK, SRC, PDGFRa, ErbB, and EGFR were significantly regulated to correct these pathways. Kinases investigated by the literature on carcinoma were considered to be potential novel molecular therapeutic target in PTC and application of corresponding kinase inhibitors could be possible therapeutic tool.Conclusion. SRC, MAPK, and EGFR were the most important differentially expressed kinases in PTC. Combined inhibitors may have high efficacy in PTC treatment by targeting these kinases.


2021 ◽  
Vol 7 ◽  
Author(s):  
Shanshan Cong ◽  
Qiuyan Guo ◽  
Yan Cheng ◽  
Jianhua Gao ◽  
Liyuan Sun ◽  
...  

Background: Endometriosis is interpreted as the existence of endometrium outside the uterine cavity, such as ovaries, fallopian tubes and pelvic cavity. Dysmenorrhea, abnormal menstruation, infertility, and chronic pelvic pain are the primary symptoms of endometriosis. Although there are many theories about the origin of endometriosis, the exact factor of the disease has not been confirmed. Therefore, many other mechanisms are still worth exploring.Materials and Methods: The gene lists of the transcription factors (TFs) were selected from the intersections of three databases. The limma R package was used to analyze the differentially expressed genes (DEGs) of GSE6364 and GSE7305 and the DEGs intersected with the TFs to obtain the differentially expressed TFs (DETFs). Subsequently, one-way ANOVA and Student's t-test were used to analyze the expression of DETFs in different phases of the endometrium and the endometrium of the infertile and fertile females with endometriosis, respectively. Enrichment analysis and PPI network were performed to reveal the molecular mechanisms of endometriosis. Finally, the plotROC R package was used to evaluate the sensitivity and specificity of hub TFs for the diagnosis of endometriosis.Results: A total of 54 DETFs were screened out in endometriosis. The expression of up-regulated DETFs was gradually increased from the early secretory to the proliferative phase of the endometrium. Most up-regulated DETFs increased expression in the endometrium of infertile females. The pathways of DETFs were mainly enriched in stem cell differentiation, transcription activity, steroid hormone receptor activity and herpes simplex virus. Two hub TFs (RUNX2 and BATF) and two sub-networks were finally acquired from the PPI network. RUNX2 and BATF also had high diagnostic value in endometriosis.Conclusion: We discovered and analyzed 54 DETFs that were closely related to endometriosis, which would contribute to explore new mechanisms of endometriosis and search for new diagnostic markers and effective therapeutic targets.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xinsheng Xie ◽  
En ci Wang ◽  
Dandan Xu ◽  
Xiaolong Shu ◽  
Yu fei Zhao ◽  
...  

Objectives: Abdominal aortic aneurysms (AAAs) are associated with high mortality rates. The genes and pathways linked with AAA remain poorly understood. This study aimed to identify key differentially expressed genes (DEGs) linked to the progression of AAA using bioinformatics analysis.Methods: Gene expression profiles of the GSE47472 and GSE57691 datasets were acquired from the Gene Expression Omnibus (GEO) database. These datasets were merged and normalized using the “sva” R package, and DEGs were identified using the limma package in R. The functions of these DEGs were assessed using Cytoscape software. We analyzed the DEGs using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. Protein–protein interaction networks were assembled using Cytoscape, and crucial genes were identified using the Cytoscape plugin, molecular complex detection. Data from GSE15729 and GSE24342 were also extracted to verify our findings.Results: We found that 120 genes were differentially expressed in AAA. Genes associated with inflammatory responses and nuclear-transcribed mRNA catabolic process were clustered in two gene modules in AAA. The hub genes of the two modules were IL6, RPL21, and RPL7A. The expression levels of IL6 correlated positively with RPL7A and negatively with RPL21. The expression of RPL21 and RPL7A was downregulated, whereas that of IL6 was upregulated in AAA.Conclusions: The expression of RPL21 or RPL7A combined with IL6 has a diagnostic value for AAA. The novel DEGs and pathways identified herein might provide new insights into the underlying molecular mechanisms of AAA.


Sign in / Sign up

Export Citation Format

Share Document