scholarly journals Paroxetine suppresses reactive microglia-mediated but not lipopolysaccharide-induced inflammatory responses in primary astrocytes

2019 ◽  
Author(s):  
Xiong Zhang ◽  
Lan-Bing Zhu ◽  
Jia-Hui He ◽  
Hong-Qiu Zhang ◽  
Shu-Ya Ji ◽  
...  

Abstract Background: Astrocytes are the most abundant glial cells in a brain that mediate inflammatory responses and provide trophic support for neurons. We have previously disclosed that paroxetine, a common selective serotonin reuptake inhibitor, ameliorates LPS-induced microglia activation. However, it remains elusive of the role of paroxetine in astrocytic responses. Methods: Isolated primary astrocytes were pretreated with paroxetine and stimulated with different stimuli, lipopolysaccharide (LPS) or microglia conditioned medium pre-activated with LPS (M/Lps). Inflammatory and neurotrophic responses, underlying mechanisms and the impact on neuronal survival were assessed. Results: Paroxetine had no impact on LPS-stimulated iNOS, TNF-α and IL-1β expression, but inhibited M/Lps-induced TNF-α and IL-1β expression in primary astrocytes. Paroxetine suppressed M/Lps- but not LPS-induced activation of NF-κB and had no impact on activation of MAPKs and STAT3. Incubation with the resulted astrocyte conditioned media caused no change in viability of SH-SY5Y cells. BDNF and MANF mRNA expressions were upregulated by M/Lps and paroxetine, respectively. However, M/Lps- or LPS-induced extracellular releases of NO, TNF-α and/or BDNF in astrocytes were in minor amount compared to those by microglia. Conclusions: Paroxetine ameliorates the reactive microglia-mediated inflammatory responses in astrocytes partially via inhibition of NF-κB pathway, but has no impact on LPS-stimulated astrocyte activation. While the effect of paroxetine on secondary astrocytic responses are not robust compared to its effect on the innate immune responses of microglia, the results together may implicate a therapeutic potential of paroxetine against neuroinflammation-associated neurological disorders such as Parkinson’s disease. Keywords: paroxetine, astrocytes, microglia, neuroinflammation, Parkinson’s disease

2019 ◽  
Author(s):  
Xiong Zhang ◽  
Lan-Bing Zhu ◽  
Jia-Hui He ◽  
Hong-Qiu Zhang ◽  
Shu-Ya Ji ◽  
...  

Abstract Background Astrocytes are the most abundant glial cells in a brain that mediate inflammatory responses and provide trophic support for neurons. We have previously disclosed that paroxetine, a common selective serotonin reuptake inhibitor, ameliorates LPS-induced microglia activation. However, it remains elusive of the role of paroxetine in astrocytic responses. Methods Isolated primary astrocytes were pretreated with paroxetine and stimulated with different stimuli, lipopolysaccharide (LPS) or microglia conditioned medium pre-activated with LPS (M/Lps). Inflammatory and neurotrophic responses, underlying mechanisms and the impact on neuronal survival were assessed. Results Paroxetine had no impact on LPS-stimulated iNOS, TNF-α and IL-1β expression, but inhibited M/Lps-induced TNF-α and IL-1β expression in primary astrocytes. Paroxetine suppressed M/Lps- but not LPS-induced activation of NF-κB and had no impact on activation of MAPKs and STAT3. Incubation with the resulted astrocyte conditioned media caused no change in viability of SH-SY5Y cells. BDNF and MANF mRNA expressions were upregulated by M/Lps and paroxetine, respectively. However, M/Lps- or LPS-induced extracellular releases of NO, TNF-α and/or BDNF in astrocytes were in minor amount compared to those by microglia. Conclusions Paroxetine ameliorates the reactive microglia-mediated inflammatory responses in astrocytes partially via inhibition of NF-κB pathway, but has no impact on LPS-stimulated astrocyte activation. While the secondary astrocytic responses are not robust compared to the innate immune responses of microglia, our results support a therapeutic potential of paroxetine against neuroinflammation-associated neurological disorders such as Parkinson’s disease.


2020 ◽  
Author(s):  
Yinquan Fang ◽  
Qingling Jiang ◽  
Shanshan Li ◽  
Hong Zhu ◽  
Xiao Ding ◽  
...  

Abstract Background Although β-arrestins (ARRBs) regulate diverse physiological and pathophysiological processes, their function and regulation in Parkinson’s disease (PD) remain poorly defined. Methods We measured expression of ARRB1 and ARRB2 in liposaccharide (LPS)-induced and 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced PD mice. ARRB1-deficient and ARRB2-deficient mouse were used to assess the impact of ARRBs on dopaminergic (DA) neuron loss and microglia activation in PD mouse models. After primary mouse DA neurons were exposed to the conditioned medium from ARRB1 knockdown or ARRB2 knockout microglia stimulated by LPS plus interferon γ (IFN-γ), the degeneration of DA neurons was quantified. Gain- and loss-of-function studies were used to study the effects of ARRBs on microglia activation in vitro. To further understand the mechanism, we measured the activation of classical inflammatory pathways and used RNA sequencing to identify the novel downstream effector of ARRBs. Result In this study, we demonstrate that expression of ARRB1 and ARRB2, particularly in microglia, is reciprocally regulated in PD mouse models. ARRB1 ablation ameliorates, whereas ARRB2 knockout aggravates, the pathological features of PD, including DA neuron loss, neuroinflammation and microglia activation in vivo, as well as microglia-mediated neuron damage and inflammation in vitro. In parallel, ARRB1 and ARRB2 produce adverse effects on the activation of inflammatory signal transducers and activators of transcription 1 (STAT1) and nuclear factor-κB (NF-κB) pathways in microglia. We also show that two ARRBs competitively interact with activated p65 in the NF-κB pathway and that nitrogen permease regulator-like 3 (Nprl3), a functionally poorly characterized protein, is a novel effector acting downstream of both ARRBs. Conclusion Collectively, these data demonstrate that two closely related ARRBs have completely opposite functions in microglia-mediated inflammatory responses, via Nprl3, and differentially affect the pathogenesis of PD, and suggest a potential therapeutic strategy.


2020 ◽  
Vol 21 (5) ◽  
pp. 509-518 ◽  
Author(s):  
Omid Reza Tamtaji ◽  
Tooba Hadinezhad ◽  
Maryam Fallah ◽  
Arash Rezaei Shahmirzadi ◽  
Mohsen Taghizadeh ◽  
...  

Parkinson’s disease (PD) is a chronic and progressive neurodegenerative disorder characterized by the progressive death of dopaminergic neurons in the substantia nigra pars compacta (SNc). PD is a multifactorial disorder, with several different factors being suggested to play a synergistic pathophysiological role, including oxidative stress, autophagy, underlying pro-inflammatory events and neurotransmitters abnormalities. Overall, PD can be viewed as the product of a complex interaction of environmental factors acting on a given genetic background. The importance of this subject has gained more attention to discover novel therapies to prevent as well as treat PD. According to previous research, drugs used to treat PD have indicated significant limitations. Therefore, the role of flavonoids has been extensively studied in PD treatment. Quercetin, a plant flavonol from the flavonoid group, has been considered as a supplemental therapy for PD. Quercetin has pharmacological functions in PD by controlling different molecular pathways. Although few studies intended to evaluate the basis for the use of quercetin in the context of PD have been conducted so far, at present, there is very little evidence available addressing the underlying mechanisms of action. Various principal aspects of these treatment procedures remain unknown. Here, currently existing knowledge supporting the use of quercetin for the clinical management of PD has been reviewed.


2020 ◽  
Author(s):  
Won Jung Hwang ◽  
Min Ah Joo ◽  
Jin Joo

Abstract BackgroundThe pathogenesis of Parkinson’s disease (PD) involves degeneration of dopaminergic neurons, which is influenced by innate and adaptive immunity. IL-17 is a characteristic cytokine secreted by Th17 cells, which acts as a powerful stimulator of neutrophil migration and infiltration and promotes the secretion of inflammatory cytokines. General anesthesia and surgical stress induce immune and inflammatory responses that activate the immunosuppressive mechanism in the perioperative period. The present study investigated changes in levels of inflammatory cytokines, such as IL-17, IL-1β, and TNF-α, in patients with PD undergoing general anesthesia with inhalational anesthetics or TIVA.MethodsAdult patients, aged 40–75 years, scheduled for cerebral stimulator implantation were enrolled. Upon arrival at the operating theater, patients were allocated to the inhalational (I) or TIVA (T) group using block randomization. In group I, anesthesia was induced by tracheal intubation 1–2 min after intravenous administration of propofol (1–2 mg/kg) and rocuronium (0.6–1 mg/kg). Thereafter, anesthesia was maintained with 1–2 vol% sevoflurane, 0.01–0.2 kg/min remifentanil, and O2/air (FiO2 0.4). In group T, propofol (3–6 µg/mL), remifentanil (2–6 ng/mL), and rocuronium (0.6–1 mg/kg) were administered using target controlled infusion (TCI) for induction of anesthesia. Blood samples were obtained preoperatively (T0), 2 h after induction of anesthesia (T1), and 24 h after surgery (T2). IL-17, IL-1β, and TNF-α levels were evaluated by ELISA.ResultsSerum levels of IL-17 were elevated at T2 in group I compared to group T but the difference was not statistically significant. IL-1β tended to be greater in group I compared to group T, but the differences were not significant. (Fig. 3). TNF-α was slightly higher at all time points in group T and showed a tendency to increase at T2 in both groups, but this was not statistically significant (Fig. 4).ConclusionsTIVA may be useful for inhibiting neuroinflammation by inhibiting the increase in serum levels of IL-17 24 h after implantation surgery. Serum IL-17 level may be used as a biomarker for PD progression.TRIAL REGISTRATION:Clinical Research Information Service of Korea National Institute of Health (CRIS) Identification number: KCT0002061. Registered 25 October 2019 - Retrospectively registered, https://cris.nih.go.kr/cris/search/search_result_st01.jsp?seq=15125


2021 ◽  
Author(s):  
Julien Vezoli ◽  
Florence Wianny ◽  
Kwamivi Dzahini ◽  
Karim Fifel ◽  
Charles Wilson ◽  
...  

Abstract Cognitive deficits as well as disorders of sleep and biological rhythms constitute non-motor symptoms that significantly impact quality of life in Parkinson’s disease patients. Few studies have evaluated the impact of cell replacement therapy on such non-motor symptoms. Here we used a multidisciplinary approach to assess the therapeutic potential of bilateral grafts of neural stem cells in a macaque model of Parkinson’s disease on both motor and non-motor markers of functional recovery. Grafts led to varying degrees of functional recovery while sham experiments did not. We show unprecedented recovery from cognitive symptoms in addition to a clear clinical motor recuperation. Motor and cognitive recovery but not circadian rhythm recovery correlated with the degree of graft integration into the host environment and with in-vivo levels of striatal dopaminergic transporters and function. This study provides empirical evidence that neural stem cells transplantation efficiently restore function at multiple levels in Parkinsonian non-human primates. We demonstrate the promising potential of multiple-sites neural stem cells grafts for Parkinson’s disease but furthermore underline the crucial importance of such multidisciplinary approaches for an effective clinical translation.


2020 ◽  
Vol 10 (4) ◽  
pp. 1601-1610
Author(s):  
Jaimie A. Roper ◽  
Abigail C. Schmitt ◽  
Hanzhi Gao ◽  
Ying He ◽  
Samuel Wu ◽  
...  

Background: The impact of concurrent osteoarthritis on mobility and mortality in individuals with Parkinson’s disease is unknown. Objective: We sought to understand to what extent osteoarthritis severity influenced mobility across time and how osteoarthritis severity could affect mortality in individuals with Parkinson’s disease. Methods: In a retrospective observational longitudinal study, data from the Parkinson’s Foundation Quality Improvement Initiative was analyzed. We included 2,274 persons with Parkinson’s disease. The main outcomes were the effects of osteoarthritis severity on functional mobility and mortality. The Timed Up and Go test measured functional mobility performance. Mortality was measured as the osteoarthritis group effect on survival time in years. Results: More individuals with symptomatic osteoarthritis reported at least monthly falls compared to the other groups (14.5% vs. 7.2% without reported osteoarthritis and 8.4% asymptomatic/minimal osteoarthritis, p = 0.0004). The symptomatic group contained significantly more individuals with low functional mobility (TUG≥12 seconds) at baseline (51.5% vs. 29.0% and 36.1%, p < 0.0001). The odds of having low functional mobility for individuals with symptomatic osteoarthritis was 1.63 times compared to those without reported osteoarthritis (p < 0.0004); and was 1.57 times compared to those with asymptomatic/minimal osteoarthritis (p = 0.0026) after controlling pre-specified covariates. Similar results hold at the time of follow-up while changes in functional mobility were not significant across groups, suggesting that osteoarthritis likely does not accelerate the changes in functional mobility across time. Coexisting symptomatic osteoarthritis and Parkinson’s disease seem to additively increase the risk of mortality (p = 0.007). Conclusion: Our results highlight the impact and potential additive effects of symptomatic osteoarthritis in persons with Parkinson’s disease.


Author(s):  
Suman Rohilla ◽  
Ranju Bansal ◽  
Puneet Chauhan ◽  
Sonja Kachler ◽  
Karl-Norbert Klotz

Background: Adenosine receptors (AR) have emerged as competent and innovative nondopaminergic targets for the development of potential drug candidates and thus constitute an effective and safer treatment approach for Parkinson’s disease (PD). Xanthine derivatives are considered as potential candidates for the treatment Parkinson’s disease due to their potent A2A AR antagonistic properties. Objective: The objectives of the work are to study the impact of substituting N7-position of 8-m/pchloropropoxyphenylxanthine structure on in vitro binding affinity of compounds with various AR subtypes, in vivo antiparkinsonian activity and binding modes of newly synthesized xanthines with A2A AR in molecular docking studies. Methods: Several new 7-substituted 8-m/p-chloropropoxyphenylxanthine analogues have been prepared. Adenosine receptor binding assays were performed to study the binding interactions with various subtypes and perphenazine induced rat catatonia model was used for antiparkinsonian activity. Molecular docking studies were performed using Schrödinger molecular modeling interface. Results: 8-para-substituted xanthine 9b bearing an N7-propyl substituent displayed the highest affinity towards A2A AR (Ki = 0.75 µM) with moderate selectivity versus other AR subtypes. 7-Propargyl analogue 9d produced significantly longlasting antiparkinsonian effects and also produced potent and selective binding affinity towards A2A AR. In silico docking studies further highlighted the crucial structural components required to develop xanthine derived potential A2A AR ligands as antiparkinsonian agents. Conclusion: A new series of 7-substituted 8-m/p-chloropropoxyphenylxanthines having good affinity for A2A AR and potent antiparkinsonian activity has been developed.


2021 ◽  
pp. 000313482198903
Author(s):  
Mitsuru Ishizuka ◽  
Norisuke Shibuya ◽  
Kazutoshi Takagi ◽  
Hiroyuki Hachiya ◽  
Kazuma Tago ◽  
...  

Objective To explore the impact of appendectomy history on emergence of Parkinson’s disease (PD). Background Although there are several studies to investigate the relationship between appendectomy history and emergence of PD, the results are still controversial. Methods We performed a comprehensive electronic search of the literature (the Cochrane Library, PubMed, and the Web of Science) up to April 2020 to identify studies that had employed databases allowing comparison of emergence of PD between patients with and those without appendectomy history. To integrate the impact of appendectomy history on emergence of PD, a meta-analysis was performed using random-effects models to calculate the risk ratio (RR) and 95% confidence interval (CI) for the selected studies, and heterogeneity was analyzed using I2 statistics. Results Four studies involving a total of 6 080 710 patients were included in this meta-analysis. Among 1 470 613 patients with appendectomy history, 1845 (.13%) had emergences of PD during the observation period, whereas among 4 610 097 patients without appendectomy history, 6743 (.15%) had emergences of PD during the observation period. These results revealed that patients with appendectomy history and without appendectomy had almost the same emergence of PD (RR, 1.02; 95% CI, .87-1.20; P = .83; I2 = 87%). Conclusion This meta-analysis has demonstrated that there was no significant difference in emergence of PD between patients with and those without appendectomy history.


2021 ◽  
Vol 22 (2) ◽  
pp. 654
Author(s):  
Ka Young Kim ◽  
Keun-A Chang

Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra. Several treatments for PD have focused on the management of physical symptoms using dopaminergic agents. However, these treatments induce various adverse effects, including hallucinations and cognitive impairment, owing to non-targeted brain delivery, while alleviating motor symptoms. Furthermore, these therapies are not considered ultimate cures owing to limited brain self-repair and regeneration abilities. In the present study, we aimed to investigate the therapeutic potential of human adipose-derived stem cells (hASCs) using magnetic nanoparticles in a 6-hydroxydopamine (6-OHDA)-induced PD mouse model. We used the Maestro imaging system and magnetic resonance imaging (MRI) for in vivo tracking after transplantation of magnetic nanoparticle-loaded hASCs to the PD mouse model. The Maestro imaging system revealed strong hASCs signals in the brains of PD model mice. In particular, MRI revealed hASCs distribution in the substantia nigra of hASCs-injected PD mice. Behavioral evaluations, including apomorphine-induced rotation and rotarod performance, were significantly recovered in hASCs-injected 6-OHDA induced PD mice when compared with saline-treated counterparts. Herein, we investigated whether hASCs transplantation using magnetic nanoparticles recovered motor functions through targeted brain distribution in a 6-OHDA induced PD mice. These results indicate that magnetic nanoparticle-based hASCs transplantation could be a potential therapeutic strategy in PD.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Velma T. E. Aho ◽  
Madelyn C. Houser ◽  
Pedro A. B. Pereira ◽  
Jianjun Chang ◽  
Knut Rudi ◽  
...  

Abstract Background Previous studies have reported that gut microbiota, permeability, short-chain fatty acids (SCFAs), and inflammation are altered in Parkinson’s disease (PD), but how these factors are linked and how they contribute to disease processes and symptoms remains uncertain. This study sought to compare and identify associations among these factors in PD patients and controls to elucidate their interrelations and links to clinical manifestations of PD. Methods Stool and plasma samples and clinical data were collected from 55 PD patients and 56 controls. Levels of stool SCFAs and stool and plasma inflammatory and permeability markers were compared between patients and controls and related to one another and to the gut microbiota. Results Calprotectin was increased and SCFAs decreased in stool in PD in a sex-dependent manner. Inflammatory markers in plasma and stool were neither intercorrelated nor strongly associated with SCFA levels. Age at PD onset was positively correlated with SCFAs and negatively correlated with CXCL8 and IL-1β in stool. Fecal zonulin correlated positively with fecal NGAL and negatively with PD motor and non-motor symptoms. Microbiota diversity and composition were linked to levels of SCFAs, inflammatory factors, and zonulin in stool. Certain relationships differed between patients and controls and by sex. Conclusions Intestinal inflammatory responses and reductions in fecal SCFAs occur in PD, are related to the microbiota and to disease onset, and are not reflected in plasma inflammatory profiles. Some of these relationships are distinct in PD and are sex-dependent. This study revealed potential alterations in microbiota-host interactions and links between earlier PD onset and intestinal inflammatory responses and reduced SCFA levels, highlighting candidate molecules and pathways which may contribute to PD pathogenesis and clinical presentation and which warrant further investigation.


Sign in / Sign up

Export Citation Format

Share Document