scholarly journals rAAV-Delivered PTEN Therapeutics for Prostate Cancer

Author(s):  
Jianzhong Ai ◽  
Jia Li ◽  
Qin Su ◽  
Hong Ma ◽  
Ran He ◽  
...  

Abstract Background: Prostate cancer (PCa) is the second most popular diagnosed cancer and the fifth leading cause of cancer-related mortality for males globally. At present, effective treatments for PCa need to be further developed. To further understand the molecular mechanism and develop novel therapeutics for PCa, the role of phosphatase and tensin homolog (PTEN) signaling in PCa progression was investigated. Previous studies have reported that PTEN and its downstream target cyclin-dependent kinase inhibitor 1B (CDKN1B) are significantly downregulated in PCa cells compared to normal controls; therefore, modulation of PTEN and CDKN1B expression might be a promising therapeutic approach for PCa treatment. Methods: The expression of PTEN and CDKN1B was first verified in specimens from PCa patients or transgenic adenocarcinoma mouse prostate (TRAMP) mice. The effect of PTEN on PCa cell migration, apoptosis and cell cycle was analyzed by wound healing assay and flow cytometry in vitro. Next, we tested the concept of intraprostatic and intratumoral injection of recombinant adeno-associated virus (rAAV) 9 expressing Pten or Cdkn1b (4x1011 genome copies (GCs)/prostate) into 8-week-old TRAMP mice and a subcutaneous tumor xenograft mouse model (5x1011 GCs/tumor), respectively, to inhibit PCa progression. Results: PTEN and CDKN1B were significantly downregulated in human and mouse PCa samples, and CDKN1B expression was positively correlated with PTEN expression. Further, PTEN overexpression significantly inhibited the cell migration and cell cycle progression and promoted the apoptosis of PCa cells by decreasing Ccnd1 expression and increasing Cdkn1b expression. Importantly, rAAV9.Pten or rAAV9.Cdkn1b treatment significantly extended the lifespan of TRAMP mice and inhibited the growth rate of tumor xenografts by regulating downstream gene expression. Moreover, we confirmed that neoplasia in the treated prostates was significantly diminished compared to that in the control prostates and that apoptosis was markedly observed in xenografts treated with Pten or Cdkn1b, highlighting changes in two crucial factors for PCa progression. Conclusions: Taken together, these data indicate that rAAV-based PTEN/CDKN1B delivery holds promise for the development of novel therapeutics for PCa.

2011 ◽  
Vol 51 (10) ◽  
pp. 761-770 ◽  
Author(s):  
Tien-Yuan Wu ◽  
Constance Lay-Lay Saw ◽  
Tin Oo Khor ◽  
Douglas Pung ◽  
Sarandeep S.S. Boyanapalli ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 334
Author(s):  
Ashraf N. Abdalla ◽  
Waleed H. Malki ◽  
Amal Qattan ◽  
Imran Shahid ◽  
Mohammad Akbar Hossain ◽  
...  

Colorectal cancer (CRC) remains one of the main causes of death worldwide and in Saudi Arabia. The toxicity and the development of resistance against 5 fluorouracil 5FU pose increasing therapeutic difficulties, which necessitates the development of personalized drugs and drug combinations. Objectives: First, to determine the most important kinases and kinase pathways, and the amount of ABC transporters and KRAS in samples taken from Saudi CRC patients. Second, to investigate the chemosensitizing effect of LY294002 and HAA2020 and their combinations with 5FU on HT29, HT29-5FU, HCT116, and HCT116-5FU CRC cells, their effect on the three ABC transporters, cell cycle, and apoptosis, in light of the important kinase pathways resulting from the first part of this study. Methods: The PamChip® peptide micro-array profiling was used to determine the level of kinase and targets in the Saudi CRC samples. Next, RT-PCR, MTT cytotoxicity, Western blotting, perturbation of cell cycle, annexin V, and immunofluorescence assays were used to investigate the effect on CRC, MRC5, and HUVEC cells. Results: The kinase activity profiling highlighted the importance of the PI3K/AKT, MAPK, and the growth factors pathways in the Saudi CRC samples. PIK3CA was the most overexpressed, and it was associated with increased level of mutated KRAS and the three ABC transporters, especially ABCC1 in the Saudi samples. Next, combining HAA2020 with 5FU exhibited the best synergistic and resistance-reversal effect in the four CRC cells, and the highest selectivity indices compared to MRC5 and HUVEC normal cells. Additionally, HAA2020 with 5FU exerted significant inhibition of ABCC1 in the four CRC cells, and inhibition of PIK3CA/AKT/MAPK7/ERK in HT29 and HT29-5FU cells. The combination also inhibited EGFR, increased the preG1/S cell cycle phases, apoptosis, and caspase 8 in HT29 cells, while it increased the G1 phase, p21/p27, and apoptosis in HT29-5FU cells. Conclusion: We have combined the PamChip kinase profiling of Saudi CRC samples with in vitro drug combination studies in four CRC cells, highlighting the importance of targeting PIK3CA and ABCC1 for Saudi CRC patients, especially given that the overexpression of PIK3CA mutations was previously linked with the lack of activity for the anti-EGFRs as first line treatment for CRC patients. The combination of HAA2020 and 5FU has selectively sensitized the four CRC cells to 5FU and could be further studied.


2013 ◽  
Vol 14 (7) ◽  
pp. 13577-13591 ◽  
Author(s):  
Wennan Zhao ◽  
Wenzhi Guo ◽  
Qianxiang Zhou ◽  
Sheng-Nan Ma ◽  
Ran Wang ◽  
...  

2016 ◽  
Vol 11 (2) ◽  
pp. 378
Author(s):  
Jin-Jun Sun ◽  
Shi-Feng Kan ◽  
Guan-Xing Sun

<p class="Abstract">We tried a new method of prostate cancer treatment by inducing<em> in vitro</em> differentiation which resulted in reduction of cancer cells growth. A protein kinase inhibitor, midostaurin's ability to trigger the human prostate cancer cell line, DU145 to segregate into nerve cells was studied. Midostaurin (100 nM) suppressed the growth of DU145 cells but without change in the number of dead cells. Midostaurin started to extend neurites on DU145 cells after 24 hours and differentiated into nerve cells by 72 hours. The microtubule was stabilized by tau protein and its mRNA expression showed time-dependent increase in midostaurin-treated DU145 cells. At the same time, the amount of acetylcholinesterase was also increased. The midostaurin-treated DU145 cells showed 40% less activity than control in the colony forming assay. The results suggests that midostaurin can induce differentiation of DU145 cells into nerve cells.</p><p> </p>


Blood ◽  
1998 ◽  
Vol 91 (12) ◽  
pp. 4694-4700 ◽  
Author(s):  
Radovan Vrhovac ◽  
Alain Delmer ◽  
Ruoping Tang ◽  
Jean-Pierre Marie ◽  
Robert Zittoun ◽  
...  

Abstract B-cell chronic lymphocytic leukemia (B-CLL) is characterized by the accumulation of resting lymphocytes. The identification of p27kip1, a cyclin-dependent kinase inhibitor that contributes to cell cycle arrest and represents a link between extracellular signals and cell cycle, prompted us to study p27 protein in the lymphocytes from 88 patients with B-CLL and 32 patients with other chronic B-lymphoproliferative disorders. The expression of p27 protein was higher in B-CLL samples with variations among them. In B-CLL, p27 levels were independent of absolute number of circulating lymphocytes, but strongly correlated with both lymphocyte and total tumor mass (TTM) doubling time. High p27 expression was associated with a poorer overall prognosis. In vitro, there was an increased spontaneous survival of B-CLL cells expressing high p27 levels. Interleukin-4 (IL-4) upregulated p27 levels in B-CLL cells, while fludarabine decreased p27 levels. Thus, our results indicate that p27 may be a valuable kinetic marker in B-CLL by providing instantaneous estimation of the disease doubling time. In addition, these results suggest that there is a link between p27 expression and the ability of CLL cells to undergo apoptosis.


2019 ◽  
Vol 40 (12) ◽  
pp. 1545-1556 ◽  
Author(s):  
Krishna B Singh ◽  
Eun-Ryeong Hahm ◽  
Joshi J Alumkal ◽  
Lesley M Foley ◽  
T Kevin Hitchens ◽  
...  

Abstract Inhibition of metabolic re-programming represents an attractive approach for prevention of prostate cancer. Studies have implicated increased synthesis of fatty acids or glycolysis in pathogenesis of human prostate cancers. We have shown previously that prostate cancer prevention by sulforaphane (SFN) in Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) model is associated with inhibition of fatty acid metabolism. This study utilized human prostate cancer cell lines (LNCaP, 22Rv1 and PC-3), two different transgenic mouse models (TRAMP and Hi-Myc) and plasma specimens from a clinical study to explore the glycolysis inhibition potential of SFN. We found that SFN treatment: (i) decreased real-time extracellular acidification rate in LNCaP, but not in PC-3 cell line; (ii) significantly downregulated expression of hexokinase II (HKII), pyruvate kinase M2 and/or lactate dehydrogenase A (LDHA) in vitro in cells and in vivo in neoplastic lesions in the prostate of TRAMP and Hi-Myc mice; and (iii) significantly suppressed glycolysis in prostate of Hi-Myc mice as measured by ex vivo1H magnetic resonance spectroscopy. SFN treatment did not decrease glucose uptake or expression of glucose transporters in cells. Overexpression of c-Myc, but not constitutively active Akt, conferred protection against SFN-mediated downregulation of HKII and LDHA protein expression and suppression of lactate levels. Examination of plasma lactate levels in prostate cancer patients following administration of an SFN-rich broccoli sprout extract failed to show declines in its levels. Additional clinical trials are needed to determine whether SFN treatment can decrease lactate production in human prostate tumors.


2009 ◽  
Vol 297 (4) ◽  
pp. C935-C944 ◽  
Author(s):  
Jae Hong Park ◽  
Ho Jae Han

The involvement of caveolin-1 in the regulation of embryonic stem (ES) cell growth by epidermal growth factor (EGF) is by no means clear cut. Thus we examined the relationship between EGF and caveolin-1 in mouse ES cell migration and proliferation. The results revealed that EGF increased Src, caveolin-1, focal adhesion kinase (FAK), Akt, and extracellular signal-regulated kinase-1/2 (ERK) phosphorylation levels. Especially, phosphorylation of caveolin-1 is attenuated by AG1478, herbimycin A (tyrosine kinase inhibitors), and pyrazolopyrimidine 2 (PP2, Src inhibitor) and EGF-induced ERK activation was blocked by PP2, methyl-β-cyclodextrin (MβCD), caveolin-1 small interfering RNA (siRNA), LY-294002 [phosphoinositol-3 kinase inhibitor (PI3K)], and Akt inhibitor. In addition, EGF promoted the cell migration, which was attenuated by PP2, caveolin-1 siRNA, FAK siRNA, LY-294002, Akt inhibitor, and PD-98059. EGF also increased matrix metalloproteinase (MMP-2) expression levels and EGF-induced MMP2 expression was inhibited by caveolin-1 siRNA, FAK siRNA, LY-294002, Akt inhibitor, and PD-98059. Furthermore, EGF-induced increase of cell cycle proteins expression level and [3H]thymidine incorporation was blocked by MMP inhibitor. EGF also significantly increases [3H]thymidine incorporation and cell number, which were significantly blocked by AG 1478, PP2, MβCD, caveolin-1 siRNA, FAK siRNA, LY-294002, and PD-98059 (ERK inhibitor). EGF-induced increase of protooncogenes (c- fos, c- myc, and c- Jun) and cell cycle regulatory proteins (cyclin D1, CDK4, cyclin E, and CDK2) expression levels were also attenuated by caveolin-1 siRNA and FAK siRNA. In conclusion, these results demonstrated that EGF-induced DNA synthesis and cell migration are mediated by caveolin-1, which is activated by Src, FAK, PI3K/Akt, ERK, and MMP-2 signals in mouse ES cells.


2015 ◽  
Vol 36 (5) ◽  
pp. 1982-1990 ◽  
Author(s):  
Li Xue ◽  
Hecheng Li ◽  
Qi Chen ◽  
Zhenlong Wang ◽  
Peng Zhang ◽  
...  

Background/Aims: Notch signaling pathway regulates cancer cell growth. RBPJ is a key transcription factor downstream of Notch receptor activation, whereas the role of RBPJ in carcinogenesis of prostate cancer is ill-defined. Methods: Here, we evaluated the effects of RBPJ inhibition on the growth of prostate cancer cells. We knocked down RBPJ in prostate cancer cells by a short hairpin interfering RNA (shRNA). We measured cell growth by an MTT assay. We analyzed the levels of cell-cycle-associated proteins by Western blot. Results: We found that shRNA for RBPJ efficiently inhibited RBPJ expression in prostate cancer cells, resulting in a significant decrease in the cell growth. Further, RBPJ-mediated cell-growth inhibition appeared to be resulting from alteration of cell-cycle inhibitors p21 and p27, cell-cycle activators CDK2, CDK4 and CyclinD1, and apoptosis-suppressor Bcl-2. Conclusion: Our data suggest that shRNA intervention of RBPJ expression could be a promising therapeutic approach for treating human prostate cancer.


2010 ◽  
Vol 22 (1) ◽  
pp. 329
Author(s):  
C. L. V. Leal ◽  
S. Mamo ◽  
T. Fair ◽  
P. Lonergan

Once removed from the follicle, mammalian oocytes resume meiosis spontaneously and progress through breakdown of the germinal vesicle to the matured state at metaphase II. The ability to reversibly inhibit such meiotic resumption has been reported and is a potentially useful method for studying developmental competence acquisition in oocytes as well as in some cases allowing flexibility in an IVF system where oocytes are collected from distant locations or on different days. The aim of the present study was to determine the effect of temporary inhibition of meiotic resumption using the cyclin-dependent kinase inhibitor butyrolactone I (BLI) on gene expression in bovine oocytes. Immature bovine oocytes were recovered from the ovaries of slaughtered heifers at a commercial abattoir and assigned to 1 of 4 groups: (1) Control: immature oocytes were collected either immediately or (2) after IVM for 24 h in TCM-199 containing 10 ng mL-1 EGF and 10% (v/v) FCS, (3) Inhibited oocytes collected either 24 h after incubation in the presence of 100 μM BLI in TCM-199 with 3 mg mL-1 BSA or (4) after meiotic inhibition for 24 h followed by in vitro maturation. All cultures were carried out at 38.5°C under 5% CO2 in air and maximum humidity. For mRNA relative abundance analysis, cumulus cells were removed and pools of 10 denuded oocytes were snap frozen in liquid nitrogen and stored at -80°C until use. A total of 42 transcripts, previously reported to be related to cell cycle regulation and/or oocyte competence were evaluated by quantitative real time PCR. Differences in relative abundance were analyzed by ANOVA and Student’s t-test. The majority of transcripts were downregulated (P < 0.05) after IVM in control oocytes (23 out of 42) and the same pattern was observed in inhibited oocytes that were allowed to mature. Twelve transcripts remained stable (P > 0.05) after IVM in control oocytes; of these, only two (PTTG1 and INHBA) did not show the same pattern in inhibited and matured oocytes. Few genes (7) were upregulated after IVM in control oocytes (P < 0.05) and of these, three (PLAT1, RBP1, and INHBB) were not upregulated in inhibited oocytes after IVM. Inhibited oocytes showed similar levels of expression (P > 0.05) as immature control oocytes, except for two genes (LUM and INHBB), which were increased in these oocytes (P < 0.05). The expression profiles of cell cycle genes were mostly unaffected by the BLI treatment. The few genes affected were previously reported as competence-related and could be useful markers of oocyte competence following pretreatment. In conclusion, the changes occurring in transcript abundance during oocyte maturation in vitro were to a large extent mirrored following inhibition of meiotic resumption prior to IVM and subsequent release from inhibition and maturation. CLV Leal was supported by CNPq, Brazil (PDE 201487/2007-1); Supported by Science Foundation Ireland (07/SRC/B1156).


Sign in / Sign up

Export Citation Format

Share Document