scholarly journals Inhibiting IL-6/STAT3/HIF-1α signaling pathway suppressed the growth of infantile hemangioma

Author(s):  
ShuiXue Li ◽  
Aziguli Maimaiti ◽  
Yeerfan Aierken ◽  
Jun He ◽  
Ling Zhou ◽  
...  

Abstract Purpose This study aimed to evaluate the expression of Interleukin 6 (IL-6) in IH patients and investigate the role of IL-6/signal transducers and activators of transduction-3 (STAT3)/hypoxia inducible factor-1α (HIF-1α) pathway in the progression of infantile hemangioma (IH). Methods Serum samples obtained from IH patients and normal infants were measured for IL-6 expression. Hemangioma-derived stem cells (HemSCs) were transfected with siRNAs targeting IL-6, HIF-1α or STAT3. And then, cell-viability assay and wound healing assay were conducted. After that, the tumor mouse model of HemSCs was established. The in vivo anticancer effect of IL-6 inhibitor was investigated. Results IH patients had much higher IL-6 levels as comparing to the healthy controls (P=0.005). HemSCs transfected with IL-6 siRNA had significantly lower viability and migration rate than normal HemSCs. And HemSCs transfected with STAT3 siRNA or HIF-1α siRNA had the similar tendency. On tumor bearing mice, IL-6 inhibitor treatment significantly delayed the tumor growth. Compared with control group, Caspase 3 was significantly increased in IL-6 inhibitor group (P<0.05), whereas Ki67 was decreased in IL-6 inhibitor group (P<0.05). In TUNEL assay, IL-6 inhibitor group had much higher apoptosis rate than control (P<0.05). Conclusion Our findings indicated that inhibiting IL-6/STAT3/HIF-1α signaling pathway could suppress IH growth.

2016 ◽  
Vol 18 (1) ◽  
pp. 96-104 ◽  
Author(s):  
M.D.M. VIANA ◽  
R.M. CARDOSO ◽  
N.K.G.T. SILVA ◽  
M.A.P. FALCÃO ◽  
A.C.S. VIEIRA ◽  
...  

ABSTRACT Experimental in vivo study aimed to characterize the anxiolytic-like effect of the Citrus limon fruit peel’s essential oil (CLEO) in animal models of anxiety, besides evaluating the viability J774.A1 cells in vitro through the MTT reduction method at the concentrations of 10 and 100 µg/mL. The anxiolytic behavior was evaluated in Swiss mice (n = 8) using the methodology of Elevated Plus-Maze (EPM) and Open-Field (OF). CLEO was tested by inhalation at the doses of 100, 200, and 400 µL, and as control, animals were subjected to inhalation of the vehicle (saline solution 0.9% + Tween80®) and intraperitoneal administration of diazepam (1.5 mg/kg). In the cell viability assay, it was observed that none of the concentrations showed cytotoxicity. OF test showed significant anxiolytic activity at all tested doses of OECL, compared to the control group, without changing the motor performance of the animals. Corroborating OF data, the EPM test confirmed anxiolytic activity in at least two doses of the tested oil (200 and 400 µL), justified by the number of entries and increase in the percentage of time in the open arms. The data analysis of this study evidenced that inhalation of OECL was able to induce an anxiolytic behavior in mice; however, further studies are required to ensure its safe use by the population.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Feng He ◽  
Hang Xiao ◽  
Yixin Cai ◽  
Ni Zhang

Abstract Background Esophageal cancer (ESCA) is one of the most common cancers worldwide and has a very poor prognosis. Hypoxia-inducible factor 1 (HIF1) signaling pathway plays a critical role in tumorigenesis and is therefore considered a potential therapeutic target in the treatment of many cancers. Activating transcription factor 5 (ATF5) facilitates the expression of various genes and has been extensively studied for its potential role in cancer treatment. Methods The expression level of ATF5 in clinic sample was detected by quantitative real time PCR and immunohistochemistry. ATF5 biological function was investigated by western blot, cell cycle analysis, cell viability assay, luciferase reporter assays, colony formation assay, transwell assay, wound healing assay, tube formation assay, and ELISA assay. CHIP and Re-CHIP assay, GST-pulldown, and RNA-sequencing were used to study the cross-talks between ATF5 and HIF1 complex. Mouse xenograft study was utilized to study the correlation of ATF5 and tumor growth in vivo. Student’s t-test or Chi-square test was used for statistical analysis. Results Here, we first found ATF5 was dramatically upregulated in ESCA cancer and related with poor survival time. Next, we found that the expression level of ATF5 had a positive relationship with the proliferation, migration, and invasion ability of ESCA cells. Besides, we innovatively found that ATF5 functions as a novel coactivator in HIF1 transcription complex by binding to HIF1α. Further, we demonstrated that silencing ATF5 phenocopies HIF1α knockdown in tumorigenic properties in vitro and inhibited ESCA tumor angiogenesis and proliferation in vivo. Conclusion Herein, we found ATF5 as a novel component of the HIF1 transcription complex. The findings of the present study may provide new insights into the development of a novel and more efficient therapeutic strategy against ESCA.


2021 ◽  
Vol 22 (4) ◽  
pp. 1985
Author(s):  
Xiaohe Li ◽  
Ling Ma ◽  
Kai Huang ◽  
Yuli Wei ◽  
Shida Long ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is a fatal and age-related pulmonary disease. Nintedanib is a receptor tyrosine kinase inhibitor, and one of the only two listed drugs against IPF. Regorafenib is a novel, orally active, multi-kinase inhibitor that has similar targets to nintedanib and is applied to treat colorectal cancer and gastrointestinal stromal tumors in patients. In this study, we first identified that regorafenib could alleviate bleomycin-induced pulmonary fibrosis in mice. The in vivo experiments indicated that regorafenib suppresses collagen accumulation and myofibroblast activation. Further in vitro mechanism studies showed that regorafenib inhibits the activation and migration of myofibroblasts and extracellular matrix production, mainly through suppressing the transforming growth factor (TGF)-β1/Smad and non-Smad signaling pathways. In vitro studies have also indicated that regorafenib could augment autophagy in myofibroblasts by suppressing TGF-β1/mTOR (mechanistic target of rapamycin) signaling, and could promote apoptosis in myofibroblasts. In conclusion, regorafenib attenuates bleomycin-induced pulmonary fibrosis by suppressing the TGF-β1 signaling pathway.


2021 ◽  
pp. 1-12
Author(s):  
Pengli Wang ◽  
Dan Zheng ◽  
Hongyang Qi ◽  
Qi Gao

BACKGROUND: MicroRNAs (miRNAs) play potential role in the development of various types of cancer conditions including pancreatic cancer (PC) targeting several cellular processes. Present study was aimed to evaluate function of miR-125b and the mechanism involved in PC. METHODS: Cell migration, MTT and BrdU study was done to establish the migration capability, cell viability and cell proliferation respectively. Binding sites for miR-125b were recognized by luciferase assay, expression of protein by western blot and immunofluorescence assay. In vivo study was done by BALB/c nude xenograft mice for evaluating the function of miR-125b. RESULTS: The study showed that expression of miR-125b was elevated in PC cells and tissues, and was correlated to proliferation and migration of cells. Also, over-expression of miR-125b encouraged migration, metastasis and proliferation of BxPC-3 cells, the suppression reversed it. We also noticed that thioredoxin-interacting protein (TXNIP) was the potential target of miR-125b. The outcomes also suggested that miR-125b governed the expression of TXNIP inversely via directly attaching to the 3′-UTR activating hypoxia-inducible factor 1α (HIF1α). Looking into the relation between HIF1α and TXNIP, we discovered that TXNIP caused the degradation and export of HIF1α by making a complex with it. CONCLUSION: The miR-125b-TXNIP-HIF1α pathway may serve useful strategy for diagnosing and treating PC.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jiong Ma ◽  
Chunxia Zhou ◽  
Xuejun Chen

Abstract Background Hedgehog (Hh) signaling pathway, which is essential for cell proliferation and differentiation, is noted to be aberrantly activated in tumor from increasing studies in recent years. MicroRNAs (miRNAs) as an important non-coding RNA in cells have been proven to possess a regulatory role specific to the Hh signaling pathway. Here, in vitro and in vivo cellular/molecular experiments were adopted to clarify the regulatory mechanism linking miR-636 to the Hh signaling pathway in ovarian cancer (OVC). Methods Protein–protein interaction analysis was performed to identify the hub gene in the Hh pathway. TargetScan database was used to predict the potential upstream regulators for Gli2. qRT-PCR was performed to test the expression of miR-636, while Western blot was conducted to detect the expression of proteins related to the Hh pathway and epithelial-mesenchymal transition (EMT). For cell functional experiments, HO-8910PM OVC cell line was used. MTT assay and wound healing assay were used to measure the effect of miR-636 on cell proliferation and migration. Flow cytometry was carried out to examine the effect of miR-636 on cell cycle, and Western blot was used to identify the change in expression of Hh and EMT-related proteins. Dual-luciferase reporter gene assay was implemented to detect the targeting relationship between miR-636 and Gli2. Xenotransplantation models were established for in vivo examination. Results Gli2 was identified as the hub gene of the Hh pathway and it was validated to be regulated by miR-636 based on the data from TargetScan and GEO databases. In vitro experiments discovered that miR-636 was significantly lowly expressed in OVC cell lines, and overexpressing miR-636 significantly inhibited HO-8910PM cell proliferation, migration and induced cell cycle arrest in G0/G1 phase, while the inhibition of miR-636 caused opposite results. Dual-luciferase reporter gene assay revealed that Gli2 was the target gene of miR-636 in OVC. Besides, overexpressed miR-636 decreased protein expression of Gli2, and affected the expression of proteins related to the Hh signaling pathway and EMT. Rescue experiments verified that overexpression of Gli2 reversed the inhibitory effect of miR-636 on HO-8910PM cell proliferation and migration, and attenuated the blocking effect of miR-636 on cell cycle. The xenotransplantation experiment suggested that miR-636 inhibited cell growth of OVC by decreasing Gli2 expression. Besides, overexpressing Gli2 potentiated the EMT process of OVC cells via decreasing E-cadherin protein expression and increasing Vimentin protein expression, and it reversed the inhibitory effect of miR-636 on OVC cell proliferation in vivo. Conclusion miR-636 mediates the activation of the Hh pathway via binding to Gli2, thus inhibiting EMT, suppressing cell proliferation and migration of OVC. Trial registration: The experimental protocol was established, according to the ethical guidelines of the Helsinki Declaration and was approved by the Human Ethics Committee of The Second Affiliated hospital of Zhejiang University School of Medicine (IR2019001235). Written informed consent was obtained from individual or guardian participants.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Yong Ji ◽  
Yiqian Liu ◽  
Changchun Sun ◽  
Lijiang Yu ◽  
Zhao Wang ◽  
...  

AbstractAs a result of mutations in the upstream components of the Wnt/β-catenin signaling pathway, this cascade is abnormally activated in colon cancer. Hence, identifying the activation mechanism of this pathway is an urgent need for the treatment of colon cancer. Here, we found an increase in ADCK1 (AarF domain-containing kinase 1) expression in clinical specimens of colon cancer and animal models. Upregulation of ADCK1 expression promoted the colony formation and infiltration of cancer cells. Downregulation of ADCK1 expression inhibited the colony formation and infiltration of cancer cells, in vivo tumorigenesis, migration, and organoid formation. Molecular mechanistic studies demonstrated that ADCK1 interacted with TCF4 (T-cell factor 4) to activate the β-catenin/TCF signaling pathway. In conclusion, our research revealed the functions of ADCK1 in the development of colon cancer and provided potential therapeutic targets.


Toxins ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 508 ◽  
Author(s):  
Daniela Luz ◽  
Maria Amaral ◽  
Flavia Sacerdoti ◽  
Alan Bernal ◽  
Wagner Quintilio ◽  
...  

Shiga toxin (Stx) producing Escherichia coli (STEC) is responsible for causing hemolytic uremic syndrome (HUS), a life-threatening thrombotic microangiopathy characterized by thrombocytopenia, hemolytic anemia, and acute renal failure after bacterially induced hemorrhagic diarrhea. Until now, there has been neither an effective treatment nor method of prevention for the deleterious effects caused by Stx intoxication. Antibodies are well recognized as affinity components of therapeutic drugs; thus, a previously obtained recombinant human FabC11:Stx2 fragment was used to neutralize Stx2 in vitro in a Vero cell viability assay. Herein, we demonstrated that this fragment neutralized, in a dose-dependent manner, the cytotoxic effects of Stx2 on human glomerular endothelial cells, on human proximal tubular epithelial cells, and prevented the morphological alterations induced by Stx2. FabC11:Stx2 protected mice from a lethal dose of Stx2 by toxin-antibody pre-incubation. Altogether, our results show the ability of a new encouraging molecule to prevent Stx-intoxication symptoms during STEC infection.


2002 ◽  
pp. 535-541 ◽  
Author(s):  
O Madrid ◽  
S Varea ◽  
I Sanchez-Perez ◽  
L Gomez-Garcia ◽  
E De Miguel ◽  
...  

BACKGROUND: In vivo treatment with growth hormone reduces radiation-associated mortality. The molecular mechanisms underlying this effect are unknown. It has been described that increased sensitivity to ionising radiation can be due to defects in machinery involved in detection and/or repair of DNA double-strand breaks. OBJECTIVE: To study the mechanisms involved in growth hormone action on the increased survival in irradiated cells. MATERIALS AND METHODS: CHO-4 cells stably expressing the growth hormone receptor were used. A cell viability assay was carried out to analyse the increase in survival induced by growth hormone in irradiated cells. To investigate whether the DNA repair mechanism could be implicated in this effect we performed DNA reactivation assays using pHIV-LUC and pCMV-betagal plasmids as control. Identical studies were also conducted using the radiomimetic drug, bleomycin. RESULTS: Growth hormone protects CHO-4 cells from bleomycin- and radiation-induced cell death. In pHIV-LUC transfected cells, a time-dependent decrease in luciferase activity was observed after irradiation in the absence of growth hormone. However, cells pretreated with this hormone maintained reporter activity. When cells were transfected with irradiated pHIV-LUC plasmid, only the hormone-treated cells recovered the transcriptional activity. CONCLUSIONS: Growth hormone exerts a radioprotective effect in CHO-4 cells stably transfected with the complementary DNA for the rat growth hormone receptor. The radioprotection is triggered directly by the hormone and it is also observed with bleomycin. The increased survival in response to radiation and bleomycin treatment induced by growth hormone correlates with an enhanced ability of the cells to repair damaged DNA.


Sign in / Sign up

Export Citation Format

Share Document