scholarly journals Isolation and optimization of a glyphosate-degrading Rhodococcus soli G41 for bioremediation

Author(s):  
Tuan Ngoc Nguyen ◽  
Van Tam Vo ◽  
Phong The Hong Nguyen ◽  
Rudolf Kiefer

Abstract A widely used herbicide for controlling weeds, glyphosate, is causing environmental pollution. It is necessary to remove it from environment using a cost-effective and eco-friendly method. The aims of this study were to isolate glyphosate-degrading bacteria and to optimize their degradative conditions required for bioremediation. Sixteen bacterial strains were isolated through enrichment and one strain, Rhodococcus soli G41, demonstrated a high removal rate of glyphosate than other strains. Response surface methodology was employed G41 strain to optimize distinct environmental factors on glyphosate degradation of G41 strain. The optimal conditions for the maximum glyphosate degradation were found to have the NH4Cl concentration of 0.663% and glyphosate concentration of 0.115%. Degradation analysis showed 47.1% of glyphosate in soil was degraded by G41 strain after 14 days. The presence of soxB gene in G41 strain indicates that the glyphosate is degraded via the eco-friendly sarcosine pathway. The results indicated that G41 strain has the potential to serve as an in-situ candidate for bioremediation of glyphosate polluted environments.

Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 824
Author(s):  
Yuan Liu ◽  
Luyan Wang ◽  
Ni Xue ◽  
Pengxiang Wang ◽  
Meishan Pei ◽  
...  

An ultra-highly efficient Graphene Oxide/TiO2/Bentonite (GO/TiO2/Bent) sponge was synthesized using an in situ hydrothermal method. GO/TiO2/Bent sponge with a GO mass concentration of 10% exhibited the highest treatment efficiency of methylene blue (MB), combining adsorption and photocatalytic degradation, and achieved a maximum removal efficiency of 100% within about 70 min. To further prove the ultra-high removal capacity of the sponge, the concentration of MB in water increased to ten times the original concentration. At so high a MB concentration, the removal rate was still as high as 80% in 90 min. The photocatalytic mechanism of GO/TiO2/Bent sponge was discussed through XPS, PL and radicals quenching experiments. Here Bent can immobilize TiO2 and react with a photo-generated hole to increase the amount of hydroxyl radical; effectively enhancing the degradation of MB.GO sponge enlarges the sensitivity range of TiO2 to visible light by increasing the charge separation of TiO2 and reducing the recombination of photo-generated electron–hole pairs. Additionally, GO sponge with an interconnected porous structure provides an effective platform to immobilize TiO2/bent and makes them be easily recovered. The as-prepared sponge develops a simple and cost-effective strategy to realize the ultra-highly efficient treatment of dyes in wastewater.


2019 ◽  
Vol 35 (4) ◽  
Author(s):  
Mehwish Iqtedar ◽  
Farah Aftab ◽  
Rabab Asim ◽  
Roheena Abdullah ◽  
Afshan Kaleem ◽  
...  

Industrialization has added extremely toxic metalloid arsenic into the environment which at high concentration severely threatens the biota. Naturally, some microbes possess the ability to bio-accumulate metals and also to transform arsenite (As III) a toxic form to a non-toxic arsenate As V. The present study aimed to isolate arsenic resistant bacterias from the arsenic contaminated soil and water. Among eleven bacterial isolates, three FAs 1, 4 and 9 exhibited tolerance against sodium arsenite at 100mM concentration by achieving growth of 7.48×109,1.57×109 and 2.23×109 C.F.U./ml, respectively. Optimization at different conditions such as temperature, pH and arsenic concentration revealed high arsenic tolerance from isolate FAs 4 (5.33×108) at 37°C and FAs 1 (4.43×108 C.F.U./ml) at pH 7. Arsenic resistance at optimum conditions for the bacterial strains FAs 1, FAs 4 and FAs 9 showed maximum growth at 80mM concentration of arsenite. These bacterial isolates did not show redox ability to oxidize arsenite As III to arsenate As V. However bacterial isolates FAs 1, FAs 4 and FAs 9 were able to accumulate arsenic 39.16, 148 and 125 µg/L on the 4th, 3rd and 5th day of incubation, respectively. The isolates FAs 1, FAs 4 and FAs 9 were identified as Gram negative non endospore forming rods. In future, these novel isolates possess a great potential in biotechnology field, as bioremediation of arsenic contaminated soil and water can be done by employing arsenic accumulating bacteria which is an eco-friendly and cost effective method.


2020 ◽  
pp. 961-969
Author(s):  
Dina Hasan Nafal ◽  
Hind Suhail Abdulhay

      This study was carried out to isolate opportunistic hydrocarbons oil-degrading bacteria and develop a consortium or a mixture of bacteria with high biodegradation capabilities which can be used in biological treatment units of the contaminated water before release. The biological processes in general are environmentally friendly and cost effective, as they are easy to design and apply; as such they are more appropriate to the public.     The location of the study was in Al-Dora refinery sludge holes area. The samples were collected for three seasons (winter, spring and summer) each consisted of three months.  The sludge samples were analyzed for various physical and chemical parameters. Temperature values of the sludge were at maximum in summer season, reaching 32˚C, whereas they were at minimum in winter (24 ˚C). The values of sludge pH were at maximum in summer (9.70) and minimum in winter (9.20). Turbidity levels were 382 NTU in spring and 353 NUT in winter. Biological oxygen demand (BOD5) was at maximum in summer (760) and (690 mg/l) in winter. The maximum dissolved oxygen (DO) value of 5.20 mg/l was recorded in winter, while the minimum was 3.80 mg/l recorded in summer. The maximum electrical conductivity (EC) was 17130 μs/cm recorded in summer, while the minimum was 16150 μs/cm recorded in winter. The maximum total dissolved solids (TDS) values were 10335 mg/l recorded in summer, while the minimum (10015 mg/l) was recorded in winter. The maximum total petroleum hydrocarbon (TPH) value (431 mg/l) was recorded in summer, while the minimum (367 mg/l) was recorded in spring. Finally, the maximum salinity value (9.90%) was recorded in spring, while the minimum (9.30%) was recorded in winter. Also, hydrocarbon compounds in sludge samples were measured using Gas Chromatography - Mass Spectrometry (GC-MS), and the result showed that they were composed of 31 hydrocarbon compounds.In the present work, nineteen sludge degrading bacterial strains were isolated from the soil near Al-Dora refinery hole by primary and secondary screenings using a modified mineral salt medium supplemented with 1% (v/v) sludge as a carbon source. The most efficient two sludge degraded isolates identified by VITIK 2 compact were Kocuria rosea and Bacillus amyloliquefaciens. The tow isolates and there mixture showed best growth at 30°C for 12 days, as shown by the measurement of the optical density of the liquid culture and the final oil concentration by spectrophotometer.      The bacterial isolates in liquid media with 2% (v/v) sludge showed best growth and the maximum biodegradation percentage after 12-day incubation period, as determined by gas chromatographic (GC). The degradation values were 68.9, 93.8 and 95.5% for Bacillus amyloliquefaciens, Kocuria rosea and the mixture of the tow isolates, respectively. In optimum conditions of pH 7, 40°C, 12 days incubation, the mixed bacterial consortium showed maximum sludge degradation.


Author(s):  
Stefanie Lotz ◽  
Robert Baresel ◽  
Dipto Thakurta ◽  
Lei Jiang ◽  
Tuhin Ghosh

This paper discusses an on-going research effort to investigate planarization strategies capable of meeting next generation high density package performance and cost requirements. The approach entails the development of an ultra-high removal rate (∼15 μm/min) copper CMP process used in the fabrication of package substrate inter-connects. Initial slurry recycling feasibility has also been investigated as part of the strategy to further reduce operating costs. A recent key thrust in advanced packaging interconnects necessitates the use of damascene-like processing techniques to fabricate build-up substrate layers having high-aspect ratio conductor traces. Inherent thickness variations resulting from the feature forming and copper electroplating processes require subsequent planarization to preserve design requirements for critical trace and ground plane uniformities. The removal rates that have been achieved are nearly one order of magnitude greater than any known ‘high removal rate’ copper slurries commercially available today. Slurry re-use feasibility evaluations were performed using a series of tests designed to characterize the slurry solubility limits. Preliminary data collection indicates promising results for recirculation/recycling of copper slurries without compromise of removal rate stability. CMP process modeling using CAD simulation tools have been shown to be successful in validating the slurry recirculation model with the experimental polish data collected.


2021 ◽  
Vol 9 (5) ◽  
pp. 887
Author(s):  
Tanmoy Roy Tusher ◽  
Takuya Shimizu ◽  
Chihiro Inoue ◽  
Mei-Fang Chien

Biodegradation is found to be a promising, cost-effective and eco-friendly option for the treatment of industrial wastewater contaminated by 1,4-dioxane (1,4-D), a highly stable synthetic chemical and probable human carcinogen. This study aimed to isolate, identify, and characterize metabolic 1,4-D-degrading bacteria from a stable 1,4-D-degrading microbial consortium. Three bacterial strains (designated as strains TS28, TS32, and TS43) capable of degrading 1,4-D as a sole carbon and energy source were isolated and identified as Gram-positive Pseudonocardia sp. (TS28) and Gram-negative Dokdonella sp. (TS32) and Afipia sp. (TS43). This study, for the first time, confirmed that the genus Dokdonella is involved in the biodegradation of 1,4-D. The results reveal that all of the isolated strains possess inducible 1,4-D-degrading enzymes and also confirm the presence of a gene encoding tetrahydrofuran/dioxane monooxygenase (thmA/dxmA) belonging to group 5 soluble di-iron monooxygenases (SDIMOs) in both genomic and plasmid DNA of each of the strains, which is possibly responsible for the initial oxidation of 1,4-D. Moreover, the isolated strains showed a broad substrate range and are capable of degrading 1,4-D in the presence of additional substrates, including easy-to-degrade compounds, 1,4-D biodegradation intermediates, structural analogs, and co-contaminants of 1,4-D. This indicates the potential of the isolated strains, especially strain TS32, in removing 1,4-D from contaminated industrial wastewater containing additional organic load. Additionally, the results will help to improve our understanding of how multiple 1,4-D-degraders stably co-exist and interact in the consortium, relying on a single carbon source (1,4-D) in order to develop an efficient biological 1,4-D treatment system.


2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Ranya A. Amer ◽  
Francesca Mapelli ◽  
Hamada M. El Gendi ◽  
Marta Barbato ◽  
Doaa A. Goda ◽  
...  

Coastal environments worldwide are threatened by the effects of pollution, a risk particularly high in semienclosed basins like the Mediterranean Sea that is poorly studied from bioremediation potential perspective especially in the Southern coast. Here, we investigated the physical, chemical, and microbiological features of hydrocarbon and heavy metals contaminated sediments collected at El-Max bay (Egypt). Molecular and statistical approaches assessing the structure of the sediment-dwelling bacterial communities showed correlations between the composition of bacterial assemblages and the associated environmental parameters. Fifty strains were isolated on mineral media supplemented by 1% crude oil and identified as a diverse range of hydrocarbon-degrading bacteria involved in different successional stages of biodegradation. We screened the collection for biotechnological potential studying biosurfactant production, biofilm formation, and the capability to utilize different hydrocarbons. Some strains were able to grow on multiple hydrocarbons as unique carbon source and presented biosurfactant-like activities and/or capacity to form biofilm and owned genes involved in different detoxification/degradation processes. El-Max sediments represent a promising reservoir of novel bacterial strains adapted to high hydrocarbon contamination loads. The potential of the strains for exploitation forin situintervention to combat pollution in coastal areas is discussed.


2020 ◽  
Vol 36 (4) ◽  
pp. 126-135
Author(s):  
T.V. Shushkova ◽  
D.O. Epiktetov ◽  
S.V. Tarlachkov ◽  
I.T. Ermakova ◽  
A.A. Leontievskii

The degradation of persistent organophosphorus pollutants have been studied in 6 soil bacterial isolates and in 3 bacterial strains adapted for utilization of glyphosate herbicide (GP) under laboratory conditions. Significant differences in the uptake of organophosphonates were found in taxonomically close strains possessing similar enzymatic pathways of catabolism of these compounds, which indicates the existence of unknown mechanisms of activity regulation of these enzymes. The effect of adaptation for GP utilization as a sole phosphorus source on assimilation rates of several other phosphonates was observed in studied bacteria. The newly found efficient stains provided up to 56% of GP decomposition after application to the soil in the laboratory. The unresolved problems of microbial GP metabolism and the trends for further research on the creation of reliable biologicals capable of decomposing organophosphonates in the environment are discussed. organophosphonates, glyphosate, biodegradation, bioremediation, C-P lyase, phosphonatase, degrading bacteria Investigation of phosphonatase and genome sequencing were supported by Russian Science Foundation Grant no. 18-074-00021.


2021 ◽  
Vol 11 (2) ◽  
pp. 620
Author(s):  
Magdalena Dyda ◽  
Agnieszka Laudy ◽  
Przemyslaw Decewicz ◽  
Krzysztof Romaniuk ◽  
Martyna Ciezkowska ◽  
...  

The aim of the presented investigation was to describe seasonal changes of microbial community composition in situ in different biocenoses on historical sandstone of the Northern Pergola in the Museum of King John III’s Palace at Wilanow (Poland). The microbial biodiversity was analyzed by the application of Illumina-based next-generation sequencing methods. The metabarcoding analysis allowed for detecting lichenized fungi taxa with the clear domination of two genera: Lecania and Rhinocladiella. It was also observed that, during winter, the richness of fungal communities increased in the biocenoses dominated by lichens and mosses. The metabarcoding analysis showed 34 bacterial genera, with a clear domination of Sphingomonas spp. across almost all biocenoses. Acidophilic bacteria from Acidobacteriaceae and Acetobacteraceae families were also identified, and the results showed that a significant number of bacterial strains isolated during the summer displayed the ability to acidification in contrast to strains isolated in winter, when a large number of isolates displayed alkalizing activity. Other bacteria capable of nitrogen fixation and hydrocarbon utilization (including aromatic hydrocarbons) as well as halophilic microorganisms were also found. The diversity of organisms in the biofilm ensures its stability throughout the year despite the differences recorded between winter and summer.


Microscopy ◽  
2020 ◽  
Author(s):  
Xiaoguang Li ◽  
Kazutaka Mitsuishi ◽  
Masaki Takeguchi

Abstract Liquid cell transmission electron microscopy (LCTEM) enables imaging of dynamic processes in liquid with high spatial and temporal resolution. The widely used liquid cell (LC) consists of two stacking microchips with a thin wet sample sandwiched between them. The vertically overlapped electron-transparent membrane windows on the microchips provide passage for the electron beam. However, microchips with imprecise dimensions usually cause poor alignment of the windows and difficulty in acquiring high-quality images. In this study, we developed a new and efficient microchip fabrication process for LCTEM with a large viewing area (180 µm × 40 µm) and evaluated the resultant LC. The new positioning reference marks on the surface of the Si wafer dramatically improve the precision of dicing the wafer, making it possible to accurately align the windows on two stacking microchips. The precise alignment led to a liquid thickness of 125.6 nm close to the edge of the viewing area. The performance of our LC was demonstrated by in situ transmission electron microscopy imaging of the dynamic motions of 2-nm Pt particles. This versatile and cost-effective microchip production method can be used to fabricate other types of microchips for in situ electron microscopy.


2021 ◽  
pp. 100773
Author(s):  
Kamoldara Reansuwan ◽  
Rotsukon Jawana ◽  
Saoharit Nitayavardhana ◽  
Sirichai Koonaphapdeelert
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document