scholarly journals Comparative Analysis of Monitoring Methods for Vortex-induced Vibration of Multistage Pressure Reducing Valves

Author(s):  
Dongtao Xu ◽  
Ge Chang-rong ◽  
Li Ying ◽  
Liu Yue-juan

Abstract In this paper, a multistage pressure reducing valve is presented. The main frequency of vortex-induced vibration is evaluated by monitoring the lift coefficient during vortex shedding and the pressure fluctuation formed after vortex shedding in the flow field. By comparative analysis of two different methods, the number of vortices is relatively small at small openings. Due to the limitations of the location and quantity of monitoring points, accurately locating the most active position where pressure fluctuation occurs is difficult. Monitoring the lift coefficient is more suitable to evaluate the main frequency of vortex-induced vibration. At medium and large openings, due to the increase in the number of vortices, the superposition effect of the pressure fluctuation and the influence of the flow channel shape is more obvious. Monitoring the pressure fluctuation is more appropriate to evaluate the main frequency of vortex-induced vibration the valve. Therefore, a combination of the two methods can more accurately evaluate the vortex-induced vibration characteristics of the valve. When monitoring pressure fluctuation, the position and number of monitoring points directly affect the evaluation accuracy. The pressure fluctuations around the outlet and the multilayer sleeve are more active. It is more meaningful to monitor the pressure fluctuation at these points. The main frequency of the pressure fluctuation at these points better reflects the vortex-induced vibration characteristics of the valve.

2014 ◽  
Vol 69 (7) ◽  
Author(s):  
Jaswar Koto ◽  
Abdul Khair Junaidi

Vortex-induced vibration is natural phenomena where an object is exposed to moving fluid caused vibration of the object. Vortex-induced vibration occurred due to vortex shedding behind the object. One of the offshore structures that experience this vortex-induced vibration is riser. The riser experience vortex-induced vibration due to vortex shedding caused by external load which is sea current. The effect of this vortex shedding to the riser is fatigue damage. Vortex-induced vibration of riser becomes the main concern in oil and gas industry since there will be a lots of money to be invested for the installation and maintenance of the riser. The previous studies of this vortex-induced vibration have been conducted by experimental method and Computational Fluid Dynamics (CFD) method in order to predict the vortex shedding behaviour behind the riser body for the determination of way to improve the riser design. This thesis represented the analysis of vortex induced vibration of rigid riser in two-dimensional. The analysis is conducted using Computational Fluid Dynamic (CFD) simulations at Reynolds number at 40, 200, 1000, and 1500. The simulations were performed using Spalart-Allmaras turbulent model to solve the transport equation of turbulent viscosity. The simulations results at Reynolds number 40 and 200 is compared with the other studies for the validation of the simulation, then further simulations were conducted at Reynolds number of 1000 and 1500. The coefficient of lift and drag were obtained from the simulations. The comparison of lift and drag coefficient between the simulation results in this study and experiment results from the other studies showed good agreement. Besides that, the in-line vibration and cross-flow vibration at different Reynolds number were also investigated. The drag coefficient obtained from the simulation results remain unchanged as the Reynolds number increased from 200 to 1500. The lift coefficient obtained from the simulations increased as the Reynolds number increased from 40 to 1500.


Author(s):  
Juan B. V. Wanderley ◽  
Sergio H. Sphaier ◽  
Carlos Levi

The hysteresis effect on the vortex induced vibration (VIV) on a circular cylinder is investigated by the numerical solution of the two-dimensional Reynolds averaged Navier-Stokes equations. An upwind and total variation diminishing (TVD) conservative scheme is used to solve the governing equations written in curvilinear coordinates and the k-ɛ turbulence model is used to simulate the turbulent flow in the wake of the body. The cylinder is supported by a spring and a damper and free to vibrate in the transverse direction. In previous work, numerical results for the amplitude of oscillation and vortex shedding frequency were compared to experimental data obtained from the literature to validate the code for VIV simulations. In the present work, results of practical interest are presented for the power absorbed by the system, phase angle, amplitude, frequency, and lift coefficient. The numerical results indicate that the hysteresis effect is observed only when the frequency of vortex shedding gets closer to the natural frequency of the structure in air.


Author(s):  
Juan B. V. Wanderley ◽  
Sergio H. Sphaier ◽  
Carlos Levi

The hysteresis effect on the vortex induced vibration (VIV) on a circular cylinder is investigated by the numerical solution of the Reynolds average Navier-Stokes equations. An upwind and Total Variation Diminishing (TVD) conservative scheme is used to solve the governing equations written in curvilinear coordinates and the k-ε turbulence model is used to simulate the turbulent flow in the wake of the body. The cylinder is supported by a spring and a damper and free to vibrate in the transverse direction. In previous work, numerical results for the amplitude of oscillation and vortex shedding frequency were compared to experimental data obtained from the literature to validate the code for VIV simulations. In the present work, results of practical interest are presented for the power absorbed by the system, phase angle, amplitude, frequency, and lift coefficient. The numerical results indicate that the hysteresis effect is observed only when the frequency of vortex shedding gets closer to the natural frequency of the structure in air.


ROTOR ◽  
2017 ◽  
Vol 10 (2) ◽  
pp. 47
Author(s):  
Maria Margareta Zau Beu ◽  
I Putu Andhi Indira Kusuma

The 2D numerical simulation of an underwater acoustic system undergoing VIV (Vortex Induced Vibration) which is in position parallel to 5 m distance with variation of hydrophone cable position. The diameter of the hydrophone cable in use is 0.04 m, with Reynold numbers (Re) variations of 13000, 15000, 17000, 19000, 21000, 23000, 25000, 27000 and 30000. Position variations are used to determine the flow pattern characteristics that occur behind the cylinder as well the maximum value of drag coefficient (CD) and lift coefficient (CL). The simulation results show that the characteristic flow pattern around a cylinder at each Re value indicates the release of the vortex behind the cylinder with different drag and lift coefficient values.  Keywords: Vortex Shedding, Hydrophone, Acoustic System


Author(s):  
Xiangxi Han ◽  
Xiaojun Zhang ◽  
Youhong Tang ◽  
Ang Qiu ◽  
Wei Lin ◽  
...  

The purpose of this study is to provide some insights into the phase mechanism of a cylindrical vortex–induced vibration. A transient coupled fluid–structure interaction numerical model is adopted to simulate a cylindrical vortex–induced vibration. The vortex shedding around the cylinder is investigated numerically by a two-dimensional large eddy simulation approach which can catch more details of the flow field and more accuracy on computing hydrodynamic forces. The vortex shedding modes and response and hydrodynamic forces of a cylindrical vortex–induced vibration are acquired with varied frequency ratios. According to differences in the vortex shedding location, the vortex wake can be characterized by two kinds of mode, the “first mode” and the “second mode.” The mechanisms behind the phases of the first mode and the second mode vortex wakes are investigated, and it is found that the flow speed induced by a cylindrical transverse vibration and the position of a vortex release are the root causes of the phase difference between the lift coefficient and transverse displacement. The speeds caused by a cylinder vibration and a cylinder-shed vortex are the reasons that the lift amplitude of an oscillatory cylinder is different from that of a fixed cylinder.


2019 ◽  
Vol 36 (4) ◽  
pp. 401-410 ◽  
Author(s):  
Xiao-Qi Jia ◽  
Bao-Ling Cui ◽  
Zu-Chao Zhu ◽  
Yu-Liang Zhang

Abstract Affected by rotor–stator interaction and unstable inner flow, asymmetric pressure distributions and pressure fluctuations cannot be avoided in centrifugal pumps. To study the pressure distributions on volute and front casing walls, dynamic pressure tests are carried out on a centrifugal pump. Frequency spectrum analysis of pressure fluctuation is presented based on Fast Fourier transform and steady pressure distribution is obtained based on time-average method. The results show that amplitudes of pressure fluctuation and blade-passing frequency are sensitive to the flow rate. At low flow rates, high-pressure region and large pressure gradients near the volute tongue are observed, and the main factors contributing to the pressure fluctuation are fluctuations in blade-passing frequency and high-frequency fluctuations. By contrast, at high flow rates, fluctuations of rotating-frequency and low frequencies are the main contributors to pressure fluctuation. Moreover, at low flow rates, pressure near volute tongue increases rapidly at first and thereafter increases slowly, whereas at high flow rates, pressure decreases sharply. Asymmetries are observed in the pressure distributions on both volute and front casing walls. With increasing of flow rate, both asymmetries in the pressure distributions and magnitude of the pressure decrease.


CFD letters ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 51-68
Author(s):  
Nurul Azihan Ramli ◽  
Azlin Mohd Azmi ◽  
Ahmad Hussein Abdul Hamid ◽  
Zainal Abidin Kamarul Baharin ◽  
Tongming Zhou

Flow over bluff bodies produces vortex shedding in their wake regions, leading to structural failure from the flow-induced forces. In this study, a passive flow control method was explored to suppress the vortex shedding from a circular cylinder that causes many problems in engineering applications. Perforated shrouds were used to control the vortex shedding of a circular cylinder at Reynolds number, Re = 200. The shrouds were of non-uniform and uniform holes with 67% porosity. The spacing gap ratio between the shroud and the cylinder was set at 1.2, 1.5, 2, and 2.2. The analysis was conducted using ANSYS Fluent using a viscous laminar model. The outcomes of the simulation of the base case were validated with existing studies. The drag coefficient, Cd, lift coefficient, Cl and the Strouhal number, St, as well as vorticity contours, velocity contours, and pressure contours were examined. Vortex shedding behind the shrouded cylinders was observed to be suppressed and delayed farther downstream with increasing gap ratio. The effect was significant for spacing ratio greater than 2.0. The effect of hole types: uniform and non-uniform holes, was also effective at these spacing ratios for the chosen Reynolds number of 200. Specifically, a spacing ratio of 1.2 enhanced further the vortex intensity and should be avoided.


2021 ◽  
Vol 2097 (1) ◽  
pp. 012028
Author(s):  
Mingming Liu ◽  
Haifei Zhuang ◽  
Lei Cao

Abstract In order to reveal the dredge pump flow instability characteristics, the cavitation and pressure fluctuation in experimental study are carried out, the pressure fluctuation frequency domain and time domain characteristics of three different position inside the volute are analyzed. The results showed that, before cavitation, the main frequency at different positions at different flow rates is 1 times the main frequency of the blade. The fluctuation amplitude near the volute tongue and diffusion section is slightly larger than that at other positions. Before cavitation, the fluctuation amplitude at the same position off design flow is slightly higher than that near the design flow. Cavitation has little influence on the main frequency of the pressure fluctuation. After cavitation, the pressure fluctuation amplitude in the low flow point and the position of the volute tongue under each condition has little change, but cavitation aggravates the pressure fluctuation in the other conditions. Besides, the comparison between simulation and experiment results shows the dredge pump performance curve is in good agreement with the simulation curve, and the simulation results of pressure amplitude at different positions are basically consistent with the experiment results, which verifies the reliability of the numerical simulation method.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xiaohua Zou ◽  
Mingsheng Ling ◽  
Wenzheng Zhai

With the development of flight technology, the need for stable aerodynamic and vibration performance of the aircraft in the civil and military fields has gradually increased. In this case, the requirements for aerodynamic and vibration characteristics of the aircraft have also been strengthened. The existing four-rotor aircraft carries limited airborne equipment and payload, while the current eight-rotor aircraft adopts a plane layout. The size of the propeller is generally fixed, including the load capacity. The upper and lower tower layout analyzed in this paper can effectively solve the problems of insufficient four-axis load and unstable aerodynamic and vibration performance of the existing eight-axis aircraft. This paper takes the miniature octorotor as the research object and studies the aerodynamic characteristics of the miniature octorotor at different low Reynolds numbers, different air pressures and thicknesses, and the lift coefficient and lift-to-drag ratio, as well as the vibration under different elastic moduli and air pressure characteristics. The research algorithm adopted in this paper is the numerical method of fluid-solid cohesion and the control equation of flow field analysis. The research results show that, with the increase in the Reynolds number within a certain range, the aerodynamic characteristics of the miniature octorotor gradually become better. When the elastic modulus is 2.5 E, the aircraft’s specific performance is that the lift increases, the critical angle of attack increases, the drag decreases, the lift-to-drag ratio increases significantly, and the angle of attack decreases. However, the transition position of the flow around the airfoil surface is getting closer to the leading edge, and its state is more likely to transition from laminar flow to turbulent flow. When the unidirectional carbon fiber-reinforced thickness is 0.2 mm and the thin arc-shaped airfoil with the convex structure has a uniform thickness of 2.5% and a uniform curvature of 4.5%, the aerodynamic and vibration characteristics of the octorotor aircraft are most beneficial to flight.


Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 326
Author(s):  
Huiyan Zhang ◽  
Fan Meng ◽  
Yunhao Zheng ◽  
Yanjun Li

To reduce cavitation-induced pressure fluctuations in a mixed-flow pump under impeller inflow distortion, the dynamic pressure signal at different monitoring points of a mixed-flow pump with a dustpan-shaped inlet conduit under normal and critical cavitation conditions was collected using high-precision digital pressure sensors. Firstly, the nonuniformity of the impeller inflow caused by inlet conduit shape was characterized by the time–frequency-domain spectra and statistical characteristics of pressure fluctuation at four monitoring points (P4–P7) circumferentially distributed at the outlet of the inlet conduit. Then, the cavity distribution on the blade surface was captured by a stroboscope. Lastly, the characteristics of cavitation-induced pressure fluctuation were obtained by analyzing the time–frequency-domain spectra and statistical characteristic values of dynamic pressure signals at the impeller inlet (P1), guide vanes inlet (P2), and guide vanes outlet (P3). The results show that the flow distribution of impeller inflow is asymmetric. The pav values at P4 and P6 were the smallest and largest, respectively. Compared with normal conditions, the impeller inlet pressure is lower under critical cavitation conditions, which leads to low pav, pp-p and a main frequency amplitude at P1. In addition, the cavity covered the whole suction side under H = 13.6 m and 15.5 m, which led the pp-p and dominant frequency amplitude of pressure fluctuation at P2 and P3 under critical cavitation to be higher than that under normal conditions.


Sign in / Sign up

Export Citation Format

Share Document