scholarly journals Antiproliferation Effects of Nanophytosome-Loaded Phenolic Compounds From Fruit of Juniperus Polycarpos Against Breast Cancer in Mice Model: Synthesis, Characterization and Therapeutic Effects

Author(s):  
Soheila Moeini ◽  
Ehsan Karimi ◽  
Ehsan Oskoueian

Abstract Background: This research was performed to synthesize nanophytosomes-loaded high phenolic fraction (HPF) from Juniperus polycarpos fruit extract and investigate its antiproliferation effects against breast cancer in mice model. Results: The nanophytosomes-loaded HPF from Juniperus polycarpos fruit extract was synthesized. The mice trial was conducted to determine the possible toxic effects of the synthesized nanophytosomes. The anticancer, pro-apoptotic, and antioxidative activities of the nanophytosomes were determined. The nanophytosomes-loaded HPF had a spherical structure with a size of 176 nm and a polydispersity index coefficient of 0.24. The in-vivo study manifested that nanophytosomes-loaded HPF significantly improved weight gain and food intake compared to the negative control group (p<0.05). The nanophytosomes-loaded HPF significantly enhanced the expression of bax (3.4-fold) and caspase-3 (2.7-fold) genes but reduced bcl2 (3.6-fold) gene expression in tumor cells. The average tumor size was significantly decreased in mice treated with nanophytosomes-loaded HPF (p<0.05). The expression of GPX (2.3-fold) and SOD (2.7-fold) antioxidants in the liver of mice supplemented with nanophytosomes-loaded HPF was significantly developed compared to the negative control (p<0.05). The nanophytosomes-loaded HPF did not show toxicity on normal cells. Conclusion: Our results indicated that nanophytosomes-loaded HPF might be a potential anticancer agent for the breast cancer treatment.

Author(s):  
YanuarEka P. ◽  
Hendy Hendarto ◽  
Widjiati .

Retrograde menstruation lead to I Kappa B Kinase (IKK) fosforilation in peritoneum macrophage and cause secretion of proinflammatory cytokine interleukin1β then stimulate endometriosis cell to produce Vascular Endothelial Growth Factor which lead to increasing of endometriosis lession seen as endometriosis implant area. Cytokine secretion was inhibited through prevention of NF-κB activation by dragon red fruit rind extract (Hylocereuspolyrhizus). The aim of this reserach is to know the effect of dragon red fuit rind extract with 0,25; 0,5; and 1 mg/g bodyweight dosage toward IL-1β, VEGF expression and implant area in endometriosis mice model. The design of this experiment was randomized post test only control group design.Endometrios mice model were made in 14 days and split into two group, positive control group and treatment group after two week negative control group and postive control group were given Na-CMC 0,5% solution consequetively, and treatment group were given dragon red fruit extract with different dosage. Signification number for IL-1β is p>0,05, signification number for VEGF is p>0,05, and implant area signification number is p>0,05. Administration of dragon red fruit rind extract can decrease IL-1β, VEGF, and implant area.


Author(s):  
Lisa Agnello ◽  
Silvia Tortorella ◽  
Annachiara d’Argenio ◽  
Clarissa Carbone ◽  
Simona Camorani ◽  
...  

Abstract Background Management of triple-negative breast cancer (TNBC) is still challenging because of its aggressive clinical behavior and limited targeted treatment options. Cisplatin represents a promising chemotherapeutic compound in neoadjuvant approaches and in the metastatic setting, but its use is limited by scarce bioavailability, severe systemic side effects and drug resistance. Novel site-directed aptamer-based nanotherapeutics have the potential to overcome obstacles of chemotherapy. In this study we investigated the tumor targeting and the anti-tumorigenic effectiveness of novel cisplatin-loaded and aptamer-decorated nanosystems in TNBC. Methods Nanotechnological procedures were applied to entrap cisplatin at high efficacy into polymeric nanoparticles (PNPs) that were conjugated on their surface with the epidermal growth factor receptor (EGFR) selective and cell-internalizing CL4 aptamer to improve targeted therapy. Internalization into TNBC MDA-MB-231 and BT-549 cells of aptamer-decorated PNPs, loaded with BODIPY505-515, was monitored by confocal microscopy using EGFR-depleted cells as negative control. Tumor targeting and biodistribution was evaluated by fluorescence reflectance imaging upon intravenously injection of Cyanine7-labeled nanovectors in nude mice bearing subcutaneous MDA-MB-231 tumors. Cytotoxicity of cisplatin-loaded PNPs toward TNBC cells was evaluated by MTT assay and the antitumor effect was assessed by tumor growth experiments in vivo and ex vivo analyses. Results We demonstrate specific, high and rapid uptake into EGFR-positive TNBC cells of CL4-conjugated fluorescent PNPs which, when loaded with cisplatin, resulted considerably more cytotoxic than the free drug and nanovectors either unconjugated or conjugated with a scrambled aptamer. Importantly, animal studies showed that the CL4-equipped PNPs achieve significantly higher tumor targeting efficiency and enhanced therapeutic effects, without any signs of systemic toxicity, compared with free cisplatin and untargeted PNPs. Conclusions Our study proposes novel and safe drug-loaded targeted nanosystems for EGFR-positive TNBC with excellent potential for the application in cancer diagnosis and therapy.


2019 ◽  
Vol 9 (1-s) ◽  
pp. 113-120
Author(s):  
Soumya S Dash ◽  
Smaranika Pattnaik

The aim of this study was to evaluate the antifungal efficacy of Kocuria marina (BMKo1) derived Lactic acid against Epidermophyton floccosum (MTCC-613) infections induced on male Swiss Albino mice model (Mus musculus).  For this purpose, the isolated strain was subjected to ‘flask fermentation’ and the Lactic acid produced as fermentation product, was quantified and analysed. Prior to preclinical test, healthy mice models of approximately 8 weeks old and 25-30 gm (weight) were subjected to intra-dermal administration for a period of 15 days to test for toxicity. Mortality, clinical signs, body weight changes were continually monitored. Then the mouse models were inoculated with 100 µl/ml (V/V) of E. floccosum (MTCC-613) spore suspensions following ‘Excision model’. After induction of the infection, the symptomatic mice groups were subjected to topical application of Kocuria lactic acid cream based formulation at a concentration of 1µl/ml (V/V). The naked eye observations were made on the infected lesions till the absolute deduction of infection of excised skin surfaces. The degrees of deduction of infection were converted into scores and the percentages (%) of deduction of infection were calculated and the average value was derived. There were inclusion of positive control (Fluconazole) and negative control (group with infection induced excision, but without any drug application) mice groups for the sake of comparison. Further, with absolute deduction of infection score observed in mice group, applied with Kocuria derived Lactic acid was akin to Fluconazole activity. However, the infection induced mice group was found to be with substantial increase of degree of infection. This study have curtain raised about the anti Epidermophyton infection activity of a cream based  Cell free Lactic acid derived from a non pathogenic strain of Kocuria marina on mouse models. Keywords: Kocuria marina, Epidermophyton floccosum, Lactic acid


Author(s):  
Hanafis Sastra Winata ◽  
Rosidah Rosidah ◽  
Panal Sitorus

 Objective: The objective of this study was to evaluate the anti-inflammatory activity in acute and subacute models of inflammation from ethanolic fruit extract of Asam kandis (Garcinia xanthochymus Hook. f. ex T. Anderson) in animal (rats) models.Methods: Pleliminary phytochemical screening was carried out by using standard procedures.. Assessment of acute and subacute models of inflammation was using carrageenan-induced paw edema method and cotton pellet granuloma method using three dosage treatments; 200 mg/kg BW, 400 mg/kg BW, and 800 mg/kg BW along with a negative control group (0.5% Na CMC) and positive control (Na diclofenac 2.25 mg/kg BW). The inhibition period was observed at 30, 60, 90, 120, 150, and 180 min time intervals.Result: The phytochemical screening showed that the ethanolic fruit extract from Asam kandis contain contains flavonoids, glycosides, steroids, and triterpenoids. The anti-inflammatory result showed that the strongest inhibition produced by ethanolic fruit extract of Asam kandis occurred on the dosage of 800 mg/kg BW compared to the other doses (200 and 400 mg/kg BW) throughout the observation period.Conclusion: This finding indicated that ethanolic fruit extract of Asam kandis (G. xanthochymus Hook. f. ex T. Anderson) might become an interesting candidate for treatment of inflammation.


Author(s):  
Nahed A Hussien ◽  
Hanan R. H. Mohamed

Objective: Cobalt nanoparticles (NPs), especially cobalt oxide NPs (Co3O4 NPs) are attracting unique shaped NPs that are used in different biomedical applications and medicine. Different in vitro studies report their toxic and carcinogenic effect but limited in vivo studies were present on its genotoxic potential. The present study was aimed to evaluate the genotoxic potential of Co3O4 NPs on bone marrow cells and sperms and the protective role of omega-3 in male albino mice.Methods: Animals were segregated into four groups that were orally treated for 3 consecutive days, Group 1: Negative control; Group 2: Omega-3 (250 mg/kg); Group 3: Co3O4 NPs (20 mg/kg); and Group 4: Combined group (250 mg/kg Omega-3 and Co3O4 NPs 20 mg/kg).Results: The present results show that Co3O4 NPs administration significantly increased number of micronucleated polychromatic erythrocytes (PCEs)/1000 PCEs, sperm abnormalities, and DNA damage, significantly decreased sperm motility and concentration in comparison to negative control group. However, Omega-3 administration in the combined group modulates the genotoxic potential of Co3O4 NPs in comparison to Co3O4 NPs group.Conclusion: The present study reports the genotoxic potential of Co3O4 NPs in vivo and assesses the protective role of Omega-3 administration due to its antioxidant effect.


Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 4 ◽  
Author(s):  
Manuel Ferreira ◽  
Ana Brito ◽  
Daniela Brazete ◽  
Inês Pereira ◽  
Eunice Carrilho ◽  
...  

The present work aims at evaluating the potential gains derived from partially replacing calcium in resorbable β-tricalcium phosphate (β-TCP) by two different molar percentages of strontium (5, 10) and zinc (1, 2), concomitantly with a fixed molar percentage (0.5) of manganese. Synthetic granular composite bone filling grafts consisting of doped β-TCP and an alkali-free bioactive glass were prepared and implanted in ~4 mm diameter bone defects drilled in the calvaria of Wistar rats used as animal models. The animals were sacrificed after 9 weeks of implantation and the calvaria was excised. Non-manipulated bone was used as positive control, while empty defects were used as a negative control group. The von Kossa staining revealed an enhanced new bone formation with increasing doping levels, supporting the therapeutic effects exerted by the doping elements. The percentage of newly formed bone was similar when the defects were filled with autologous bone, BG (previous results) or 3TCP2/7BG, which indicates that the latter two are excellent candidates for replacement of autologous bone as bone regeneration material. This finding confirms that doping with suitable doses of therapeutic ions is a good strategy towards transposing the bone graft materials to biomedical applications in humans.


2017 ◽  
Vol 2 (1) ◽  
pp. 47
Author(s):  
Anik Listiyana

<p><em>The aim of this research is to determine the influence of jamu Madura “Empot Super” (JMES) on the vaginal epithelium thickness of Rattus norvegicus in vivo. This research is kind of “true experimental-post test only control group design”. The rats were given drinking JMES once daily PS (Per-Sonde) for a month, then the vagina was taken to be sample for HE colouring. The sample was observed by the binocular microscope (100 times magnification) to identify the changes in the thickness of their vaginal epithelium. Calculation of the vaginal epithelium thickness was counted on the 10 field of view chosen randomly by the blind method. The result show that the vaginal epithelium thickness increased with dose 0,17mg/BW, 0,34mg/BW, and 0,68mg/BW of JMES compared with negative control group. But, the vaginal epithelium thickness decrease at the dose 0,51mg/BW compared with negative control group.</em></p><p> </p><p><strong>Keywords</strong><strong>: </strong>Jamu Madura “Empot Super” (JMES), vaginal epithelium thickness, white mice (<em>Rattus norvegicus</em>), In Vivo study</p>


2007 ◽  
Vol 35 (05) ◽  
pp. 841-851 ◽  
Author(s):  
Mehmet Ozaslan ◽  
I. Didem Karagöz ◽  
M. Emin Kalender ◽  
I. Halil. Kilic ◽  
Ibrahim Sari ◽  
...  

The aim of this study is to investigate the antitumor activity of Plantago major L. extract in Ehrlich ascites tumor (EAT) bearing Balb/C mice in vivo. Thirty male Balb/C mice were divided into 5 groups: 3 treatment groups and 2 control groups (6 per group). Treatment groups and the negative control group were injected with EAT (1 × 106 cells) intraperitoneally to develop ascites tumor. P. major L. extract (1%, 2% and 3% concentration extracts, 0.1 ml/day/mouse) were given p.o. for 10 alternate days. The control group was treated with 0.9% NaCl solution (0.1 ml/day/mouse). The changes of body weight in animals were recorded. On the 11th day, all of the mice were sacrified and their tissues were stained with haematoxylen and eosin for pathological studies. Body weights of in 3 treatment groups and the negative control group were elevated because of tumor burden. The maximal weight gain was recorded in the negative control group and the minimal weight gain was recorded in Group I. Pathological studies showed that P. major L. extract (especially 1% concentration) has inhibitive effect on EAT. P. major has an inhibitory effect on EAT in a dose dependent manner.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 410
Author(s):  
Wan-Hsuan Hung ◽  
Ping-Kang Chen ◽  
Chih-Wun Fang ◽  
Ying-Chi Lin ◽  
Pao-Chu Wu

The aim of this study was to design oil in water (O/W) microemulsion formulations for the topical administration of azelaic acid. The permeability of azelaic acid through rat skin and the anti-inflammatory activities of the formulations were conducted to examine the efficacy of the designed formulations. Skin irritation and stability tests were also performed. The permeability of azelaic acid was significantly increased by using O/W microemulsions as carriers. The edema index of ear swelling percentage was significantly recovered by the 5% drug-loaded formulation and a 20% commercial product, demonstrating that the experimental formulation possessed comparable effect with the commercial product on the improvement of inflammation. The experimental formulation did not cause significant skin irritation compared to the negative control group. Moreover, the drug-loaded formulation also showed thermodynamic stability and chemical stability after storage for 30 days. In conclusion, the O/W microemulsion was a potential drug delivery carrier for azelaic acid topical application.


Sign in / Sign up

Export Citation Format

Share Document