Effects of Different Probiotic Strains B. Lactis, L. Rhamnosus and L. Reuteri on Brain-Intestinal Axis Immunomodulation in an Endotoxin-Induced Inflammation

Author(s):  
Monique Michels ◽  
Gabriel Fernandes Alves Jesus ◽  
Mariane Rocha Abatti ◽  
Emily Córneo ◽  
Luana Cucker ◽  
...  

Abstract Aim: The study evaluated the effects of supplementation with three different probiotic strains B. lactis (LACT GBTM), L. rhamnosus (RHAM GBTM) and L. reuteri (REUT GBTM) on brain-intestinal immunomodulation in an animal model of LPS-induced inflammation. Methods: 50 mice Balb/C were distributed into five groups: Control; lipopolysaccharide (LPS); LPS + B. lactis (LACT GBTM); LPS + L. rhamnosus (RHAM GBTM); LPS + L. reuteri (REUT GBTM). The animals were supplemented with their respective probiotic microorganisms daily, for 30 days, at a concentration of 1x109 CFU/animal/day. After 30 days of supplementation, animals received the inflammatory insult by LPS (15mg/kg). Behavioral tests, oxidative stress and inflammation were performed, as well as gut and brain histology. Results: In the behavioral test, LPS+ B. lactis group was less anxious than the other groups. Serum interleukin IL-1β and IL-6 levels increased in all groups that received the LPS insult and there was a reduction in inflammation in the supplemented groups when compared to the LPS group in brain and gut. A reduction in myeloperoxidase activity and oxidative stress in groups supplemented with probiotics. Intestine histological analysis, damage to tissue integrity in the LPS group and preservation of integrity in the supplemented animals. In the brain, infiltrates of perivascular inflammatory cells can be seen in the LPS group. Conclusion: The three probiotic studies showed efficient immunomodulating activity and ensured integrity of the intestinal barrier function, even after the severe insult by LPS. These results show the important role of probiotics in the gut-brain axis.

2021 ◽  
Author(s):  
Monique Michels ◽  
Gabriel Fernandes Alves Jesus ◽  
Mariane Rocha Abatti ◽  
Emily Córneo ◽  
Luana Cucker ◽  
...  

Abstract Aim: The study evaluated the effects of supplementation with three different probiotic strains B. lactis (LACT GBTM), L. rhamnosus (RHAM GBTM) and L. reuteri (REUT GBTM) on brain-intestinal immunomodulation in an animal model of LPS-induced inflammation. Methods: 50 mice Balb/C were distributed into five groups: Control; lipopolysaccharide (LPS); LPS + B. lactis (LACT GBTM); LPS + L. rhamnosus (RHAM GBTM); LPS + L. reuteri (REUT GBTM). The animals were supplemented with their respective probiotic microorganisms daily, for 30 days, at a concentration of 1x109 CFU/animal/day. After 30 days of supplementation, animals received the inflammatory insult by LPS (15mg/kg). Behavioral tests, oxidative stress and inflammation were performed, as well as gut and brain histology. Results: In the behavioral test, LPS+ B. lactis group was less anxious than the other groups. Serum interleukin IL-1β and IL-6 levels increased in all groups that received the LPS insult and there was a reduction in inflammation in the supplemented groups when compared to the LPS group in brain and gut. A reduction in myeloperoxidase activity and oxidative stress in groups supplemented with probiotics. Intestine histological analysis, damage to tissue integrity in the LPS group and preservation of integrity in the supplemented animals. In the brain, infiltrates of perivascular inflammatory cells can be seen in the LPS group. Conclusion: The three probiotic studies showed efficient immunomodulating activity and ensured integrity of the intestinal barrier function, even after the severe insult by LPS. These results show the important role of probiotics in the gut-brain axis.


2016 ◽  
Vol 29 (5) ◽  
pp. 503-515 ◽  
Author(s):  
Mara Poulakos ◽  
Jade D. Machin ◽  
Julienne Pauly ◽  
Yasmin Grace

Inflammatory bowel diseases (IBDs) are chronic inflammatory disorders affecting the gastrointestinal (GI) tract that encompass Crohn’s disease (CD) and ulcerative colitis (UC). In these disease states, epithelial damage of the intestinal mucosa is evident due to increased lymphocyte trafficking to the area, which affects the normal intestinal barrier function. Currently available pharmacotherapy can be limited in terms of efficacy and associated toxicities. Newer agents have emerged, including the monoclonal antibody natalizumab, which antagonizes integrin, an important component within the inflammation cascade. Natalizumab works by modulating both the GI and brain biologic responses and as a result there is risk of the opportunistic infection known as progressive multifocal leukoencephalopathy (PML), putting patients at risk for severe disability and death. Vedolizumab, another integrin inhibitor, is selective for modulating the gut biologic response but not the brain, consequently decreasing the risk for PML. To generate information regarding the role of vedolizumab in the treatment of IBD, a literature search was conducted, yielding 7 phase I to III clinical trials. This article serves as a summary of efficacy, safety, and other relevant information from clinical studies to explore the role of vedolizumab in the treatment of CD and UC.


Author(s):  
Sara Keränen ◽  
Santeri Suutarinen ◽  
Rahul Mallick ◽  
Johanna P. Laakkonen ◽  
Diana Guo ◽  
...  

Abstract Background Brain arteriovenous malformations (bAVM) may rupture causing disability or death. BAVM vessels are characterized by abnormally high flow that in general triggers expansive vessel remodeling mediated by cyclo-oxygenase-2 (COX2), the target of non-steroidal anti-inflammatory drugs. We investigated whether COX2 is expressed in bAVMs and whether it associates with inflammation and haemorrhage in these lesions. Methods Tissue was obtained from surgery of 139 bAVMs and 21 normal Circle of Willis samples. The samples were studied with immunohistochemistry and real-time quantitative polymerase chain reaction (RT-PCR). Clinical data was collected from patient records. Results COX2 expression was found in 78% (109/139) of the bAVMs and localized to the vessels’ lumen or medial layer in 70% (95/135) of the bAVMs. Receptors for prostaglandin E2, a COX2-derived mediator of vascular remodeling, were found in the endothelial and smooth muscle cells and perivascular inflammatory cells of bAVMs. COX2 was expressed by infiltrating inflammatory cells and correlated with the extent of inflammation (r = .231, p = .007, Spearman rank correlation). COX2 expression did not associate with haemorrhage. Conclusion COX2 is induced in bAVMs, and possibly participates in the regulation of vessel wall remodelling and ongoing inflammation. Role of COX2 signalling in the pathobiology and clinical course of bAVMs merits further studies.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 160
Author(s):  
Vladana Domazetovic ◽  
Irene Falsetti ◽  
Caterina Viglianisi ◽  
Kristian Vasa ◽  
Cinzia Aurilia ◽  
...  

Vitamin E, a fat-soluble compound, possesses both antioxidant and non-antioxidant properties. In this study we evaluated, in intestinal HT29 cells, the role of natural tocopherols, α-Toc and δ-Toc, and two semi-synthetic derivatives, namely bis-δ-Toc sulfide (δ-Toc)2S and bis-δ-Toc disulfide (δ-Toc)2S2, on TNFα-induced oxidative stress, and intercellular adhesion molecule-1 (ICAM-1) and claudin-2 (Cl-2) expression. The role of tocopherols was compared to that of N-acetylcysteine (NAC), an antioxidant precursor of glutathione synthesis. The results show that all tocopherol containing derivatives used, prevented TNFα-induced oxidative stress and the increase of ICAM-1 and Cl-2 expression, and that (δ-Toc)2S and (δ-Toc)2S2 are more effective than δ-Toc and α-Toc. The beneficial effects demonstrated were due to tocopherol antioxidant properties, but suppression of TNFα-induced Cl-2 expression seems not only to be related with antioxidant ability. Indeed, while ICAM-1 expression is strongly related to the intracellular redox state, Cl-2 expression is TNFα-up-regulated by both redox and non-redox dependent mechanisms. Since ICAM-1 and Cl-2 increase intestinal bowel diseases, and cause excessive recruitment of immune cells and alteration of the intestinal barrier, natural and, above all, semi-synthetic tocopherols may have a potential role as a therapeutic support against intestinal chronic inflammation, in which TNFα represents an important proinflammatory mediator.


Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 187
Author(s):  
Lokman Pang ◽  
Jennifer Huynh ◽  
Mariah G. Alorro ◽  
Xia Li ◽  
Matthias Ernst ◽  
...  

The intestinal epithelium provides a barrier against commensal and pathogenic microorganisms. Barrier dysfunction promotes chronic inflammation, which can drive the pathogenesis of inflammatory bowel disease (IBD) and colorectal cancer (CRC). Although the Signal Transducer and Activator of Transcription-3 (STAT3) is overexpressed in both intestinal epithelial cells and immune cells in IBD patients, the role of the interleukin (IL)-6 family of cytokines through the shared IL-6ST/gp130 receptor and its associated STAT3 signalling in intestinal barrier integrity is unclear. We therefore investigated the role of STAT3 in retaining epithelial barrier integrity using dextran sulfate sodium (DSS)-induced colitis in two genetically modified mouse models, to either reduce STAT1/3 activation in response to IL-6 family cytokines with a truncated gp130∆STAT allele (GP130∆STAT/+), or by inducing short hairpin-mediated knockdown of Stat3 (shStat3). Here, we show that mice with reduced STAT3 activity are highly susceptible to DSS-induced colitis. Mechanistically, the IL-6/gp130/STAT3 signalling cascade orchestrates intestinal barrier function by modulating cytokine secretion and promoting epithelial integrity to maintain a defence against bacteria. Our study also identifies a crucial role of STAT3 in controlling intestinal permeability through tight junction proteins. Thus, therapeutically targeting the IL-6/gp130/STAT3 signalling axis to promote barrier function may serve as a treatment strategy for IBD patients.


2021 ◽  
Vol 22 (7) ◽  
pp. 3330
Author(s):  
Mehdi Eshraghi ◽  
Aida Adlimoghaddam ◽  
Amir Mahmoodzadeh ◽  
Farzaneh Sharifzad ◽  
Hamed Yasavoli-Sharahi ◽  
...  

Alzheimer’s disease (AD) is a debilitating neurological disorder, and currently, there is no cure for it. Several pathologic alterations have been described in the brain of AD patients, but the ultimate causative mechanisms of AD are still elusive. The classic hallmarks of AD, including am-yloid plaques (Aβ) and tau tangles (tau), are the most studied features of AD. Unfortunately, all the efforts targeting these pathologies have failed to show the desired efficacy in AD patients so far. Neuroinflammation and impaired autophagy are two other main known pathologies in AD. It has been reported that these pathologies exist in AD brain long before the emergence of any clinical manifestation of AD. Microglia are the main inflammatory cells in the brain and are considered by many researchers as the next hope for finding a viable therapeutic target in AD. Interestingly, it appears that the autophagy and mitophagy are also changed in these cells in AD. Inside the cells, autophagy and inflammation interact in a bidirectional manner. In the current review, we briefly discussed an overview on autophagy and mitophagy in AD and then provided a comprehensive discussion on the role of these pathways in microglia and their involvement in AD pathogenesis.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 959 ◽  
Author(s):  
Jefferson Antônio Leite ◽  
Gabriela Pessenda ◽  
Isabel C. Guerra-Gomes ◽  
Alynne Karen Mendonça de Santana ◽  
Camila André Pereira ◽  
...  

Pattern recognition receptors (PRRs), such as Nod2, Nlrp3, Tlr2, Trl4, and Tlr9, are directly involved in type 1 diabetes (T1D) susceptibility. However, the role of the cytosolic DNA sensor, AIM2, in T1D pathogenesis is still unknown. Here, we demonstrate that C57BL/6 mice lacking AIM2 (AIM2−/−) are prone to streptozotocin (STZ)-induced T1D, compared to WT C57BL/6 mice. The AIM2−/− mice phenotype is associated with a greater proinflammatory response in pancreatic tissues, alterations in gut microbiota and bacterial translocation to pancreatic lymph nodes (PLNs). These alterations are related to an increased intestinal permeability mediated by tight-junction disruption. Notably, AIM2−/− mice treated with broad-spectrum antibiotics (ABX) are protected from STZ-induced T1D and display a lower pancreatic proinflammatory response. Mechanistically, the AIM2 inflammasome is activated in vivo, leading to an IL-18 release in the ileum at 15 days after an STZ injection. IL-18 favors RegIIIγ production, thus mitigating gut microbiota alterations and reinforcing the intestinal barrier function. Together, our findings show a regulatory role of AIM2, mediated by IL-18, in shaping gut microbiota and reducing bacterial translocation and proinflammatory response against insulin-producing β cells, which ultimately results in protection against T1D onset in an STZ-induced diabetes model.


Author(s):  
Andrea Sanchez-Navarro ◽  
Isaac González-Soria ◽  
Rebecca Caldiño-Bohn ◽  
Norma A. Bobadilla

Serpins are a superfamily of proteins characterized by their common function as serine protease inhibitors. So far, 36 serpins from nine clades have been identified. These proteins are expressed in all the organs and are involved in multiple important functions such as the regulation of blood pressure, hormone transport, insulin sensitivity, and the inflammatory response. Diseases such as obesity, diabetes, cardiovascular, and kidney disorders are intensively studied to find effective therapeutic targets. Given serpins' outstanding functionality, the deficiency or overexpression of certain types of serpin have been associated with diverse pathophysiological events. In particular, we will focus on reviewing the studies evaluating the participation of serpins, and particularly SerpinA3, in diverse diseases that occur in relevant organs such as the brain, retinas, corneas, lungs, cardiac vasculature, and kidneys. In this review, we summarize the role of serpins in physiological and pathophysiological processes, as well as recent evidence on the crucial role of SerpinA3 in several pathologies. Finally, we emphasize the importance of SerpinA3 in regulating cellular processes such as angiogenesis, apoptosis, fibrosis, oxidative stress, and the inflammatory response.


Sign in / Sign up

Export Citation Format

Share Document