The Heat Is on: a Simple Method to Increase Genome Editing Efficiency in Plants

Author(s):  
Jonas Blomme ◽  
Ward Develtere ◽  
Ayse Köse ◽  
Júlia Arraiza Ribera ◽  
Christophe Brugmans ◽  
...  

Abstract Background: Precision genome mutagenesis using CRISPR/Cas has become the standard method to generate mutant plant lines. Several improvements have been made to increase mutagenesis efficiency, either through vector optimisation or the application of heat stress. Results: Here, we present a simplified heat stress assay that can be completed in six days using commonly-available laboratory equipment. We show that three heat shocks (3xHS) efficiently increases indel efficiency of LbCas12a and Cas9, irrespective of the target sequence or the promoter used to express the nuclease. The generated indels are primarily somatic, but for three out of five targets we demonstrate that up to 25% more biallelic mutations are transmitted to the progeny when heat is applied compared to non-heat controls. We also applied our heat treatment to lines containing CRISPR base editors and observed a 22-27% increase in the percentage of C-to-T base editing. Furthermore, we test the effect of 3xHS on generating large deletions and a homologous recombination reporter. Interestingly, we observed no positive effect of 3xHS treatment on either approach using our conditions.Conclusions: Together, our experiments show that heat treatment is consistently effective at increasing the number of somatic mutations using many CRISPR approaches in plants and in some cases can increase the recovery of mutant progeny.

Author(s):  
Shuta Kurokawa ◽  
Hafizur Rhaman ◽  
Naoshi Yamanaka ◽  
Chisato Ishizaki ◽  
Shaikhul Islam ◽  
...  

Abstract The CRISPR/Cas9 system is now commonly employed for genome editing in various plants such as Arabidopsis, rice, and tobacco. In general, in genome editing of the Arabidopsis genome, the SpCas9 and guide RNA genes are introduced into the genome by the floral dip method. Mutations induced in the target sequence by SpCas9 are confirmed after selecting transformants by screening the T1 seed population. The advantage of this method is that genome-edited plants can be isolated easily. However, mutation efficiency in Arabidopsis using SpCas9 is not as high as that achieved in rice and tobacco, which are subjected to a tissue culture step. In this study, we compared four promoters and found that the parsley UBIQITIN promoter is highly active in Arabidopsis meristem tissue. Furthermore, we examined whether a simple heat treatment could improve mutation efficiency in Arabidopsis. Just one heat treatment at 37 °C for 24 hours increased the mutation efficiency at all four target sites from 3% to 42%, 43% to 62%, 54% to 75%, and 89 to 91%, respectively, without detectable off-target mutations. We recommend heat treatment of plate-grown plants at 37 °C for 24 hours as a simple method to increase the efficiency of CRISPR/Cas9-mediated mutagenesis in Arabidopsis.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1154
Author(s):  
Diego E. Lozano ◽  
George E. Totten ◽  
Yaneth Bedolla-Gil ◽  
Martha Guerrero-Mata ◽  
Marcel Carpio ◽  
...  

Automotive components manufacturers use the 5160 steel in leaf and coil springs. The industrial heat treatment process consists in austenitizing followed by the oil quenching and tempering process. Typically, compressive residual stresses are induced by shot peening on the surface of automotive springs to bestow compressive residual stresses that improve the fatigue resistance and increase the service life of the parts after heat treatment. In this work, a high-speed quenching was used to achieve compressive residual stresses on the surface of AISI/SAE 5160 steel samples by producing high thermal gradients and interrupting the cooling in order to generate a case-core microstructure. A special laboratory equipment was designed and built, which uses water as the quenching media in a high-speed water chamber. The severity of the cooling was characterized with embedded thermocouples to obtain the cooling curves at different depths from the surface. Samples were cooled for various times to produce different hardened case depths. The microstructure of specimens was observed with a scanning electron microscope (SEM). X-ray diffraction (XRD) was used to estimate the magnitude of residual stresses on the surface of the specimens. Compressive residual stresses at the surface and sub-surface of about −700 MPa were obtained.


2021 ◽  
Author(s):  
Maite Domínguez-Fernández ◽  
Iziar A. Ludwig ◽  
María-Paz De Peña ◽  
Concepción Cid

Heat treatment exerts a positive effect on the bioaccessibility of artichoke (poly)phenols after gastrointestinal digestion. In the first 2 h of fermentation, native (poly)phenols were readily degraded by an important microbial catabolic activity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sherzod Nigmatullayevich Rajametov ◽  
Eun Young Yang ◽  
Myeong Cheoul Cho ◽  
Soo Young Chae ◽  
Hyo Bong Jeong ◽  
...  

AbstractUnderstanding the mechanism for heat tolerance is important for the hot pepper breeding program to develop heat-tolerant cultivars in changing climate. This study was conducted to investigate physiological and biochemical parameters related to heat tolerance and to determine leaf heat damage levels critical for selecting heat-tolerant genotypes. Seedlings of two commercial cultivars, heat-tolerant ‘NW Bigarim’ (NB) and susceptible ‘Chyung Yang’ (CY), were grown in 42 °C for ten days. Photosynthesis, electrolyte conductivity, proline content were measured among seedlings during heat treatment. Photosynthetic rate was significantly reduced in ‘CY’ but not in ‘NB’ seedlings in 42 °C. Stomatal conductivity and transpiration rate was significantly higher in ‘NB’ than ‘CY’. Proline content was also significantly higher in ‘NB’. After heat treatment, leaf heat damages were determined as 0, 25, 50 and 75% and plants with different leaf heat damages were moved to a glasshouse (30–32/22–24 °C in day/night). The growth and developmental parameters were investigated until 70 days. ‘NB’ was significantly affected by leaf heat damages only in fruit yield while ‘CY’ was in fruit set, number and yield. ‘NB’ showed fast recovery after heat stress compared to ‘CY’. These results suggest that constant photosynthetic rate via increased transpiration rate as well as high proline content in heat stress condition confer faster recovery from heat damage of heat-tolerant cultivars in seedlings stages.


Author(s):  
Mahmoud Hussien Abou-Deif ◽  
Mohamed Abdel-Salam Rashed ◽  
Kamal Mohamed Khalil ◽  
Fatma El-Sayed Mahmoud

Abstract Background Maize is one of the important cereal food crops in the world. High temperature stress causes adverse influence on plant growth. When plants are exposed to high temperatures, they produce heat shock proteins (HSPs), which may impart a generalized role in tolerance to heat stress. Proteome analysis was performed in plant to assess the changes in protein types and their expression levels under abiotic stress. The purpose of the study is to explore which proteins are involved in the response of the maize plant to heat shock treatment. Results We investigated the responses of abundant proteins of maize leaves, in an Egyptian inbred line of maize “K1”, upon heat stress through two-dimensional electrophoresis (2-DE) on samples of maize leaf proteome. 2-DE technique was used to recognize heat-responsive protein spots using Coomassie Brilliant Blue (CBB) and silver staining. In 2-D analysis of proteins from plants treated at 45 °C for 2 h, the results manifested 59 protein spots (4.3%) which were reproducibly detected as new spots where did not present in the control. In 2D for treated plants for 4 h, 104 protein spots (7.7%) were expressed only under heat stress. Quantification of spot intensities derived from heat treatment showed that twenty protein spots revealed clear differences between the control and the two heat treatments. Nine spots appeared with more intensity after heat treatments than the control, while four spots appeared only after heat treatments. Five spots were clearly induced after heat treatment either at 2 h or 4 h and were chosen for more analysis by LC-MSMS. They were identified as ATPase beta subunit, HSP26, HSP16.9, and unknown HSP/Chaperonin. Conclusion The results revealed that the expressive level of the four heat shock proteins that were detected in this study plays important roles to avoid heat stress in maize plants.


Author(s):  
Maurizio Iovane ◽  
Giovanna Aronne

AbstractMany crop species are cultivated to produce seeds and/or fruits and therefore need reproductive success to occur. Previous studies proved that high temperature on mature pollen at anther dehiscence reduce viability and germinability therefore decreasing crop productivity. We hypothesized that high temperature might affect pollen functionality even if the heat treatment is exerted only during the microsporogenesis. Experimental data on Solanum lycopersicum ‘Micro-Tom’ confirmed our hypothesis. Microsporogenesis successfully occurred at both high (30 °C) and optimal (22 °C) temperature. After the anthesis, viability and germinability of the pollen developed at optimal temperature gradually decreased and the reduction was slightly higher when pollen was incubated at 30 °C. Conversely, temperature effect was eagerly enhanced in pollen developed at high temperature. In this case, a drastic reduction of viability and a drop-off to zero of germinability occurred not only when pollen was incubated at 30 °C but also at 22 °C. Further ontogenetic analyses disclosed that high temperature significantly speeded-up the microsporogenesis and the early microgametogenesis (from vacuolated stage to bi-cellular pollen); therefore, gametophytes result already senescent at flower anthesis. Our work contributes to unravel the effects of heat stress on pollen revealing that high temperature conditions during microsporogenesis prime a fatal shortening of the male gametophyte lifespan.


Author(s):  
Sherzod Rajametov ◽  
Eun Young Yang ◽  
Myeong Cheoul Cho ◽  
Soo Young Chae ◽  
Hyo Bong Jeong ◽  
...  

Understanding the mechanism for heat tolerance is important for the hot pepper breeding program to develop heat-tolerant cultivars in changing climate. This study was conducted to investigate physiological and biochemical parameters related to heat tolerance and to determine leaf heat damage levels critical for selecting heat-tolerant genotypes. Seedlings of two commercial cultivars, heat-tolerant ‘NW Bigarim’ (NB) and susceptible ‘Chyung Yang’ (CY), were grown in 42 °C for ten days. Photosynthesis, electrolyte conductivity, proline content were measured among seedlings during heat treatment. Photosynthetic rate was significantly reduced in ‘CY’ but not in ‘NB’ seedlings in 42 °C. Stomatal conductivity and transpiration rate was significantly higher in ‘NB’ than ‘CY’. Proline content was also significantly higher in ‘NB’. After heat treatment, leaf heat damages were determined as 0, 25, 50 and 75% and plants with different leaf heat damages were moved to a glasshouse (30–32/22–24 °C in day/night). The growth and developmental parameters were investigated until 70 days. ‘NB’ was significantly affected by leaf heat damages only in fruit yield while ‘CY’ was in fruit set, number and yield. ‘NB’ showed fast recovery after heat stress compared to ‘CY’. These results suggest that constant photosynthetic rate via increased transpiration rate as well as high proline content in heat stress condition confer faster recovery from heat damage of heat-tolerant cultivars in seedlings stages.


2017 ◽  
Vol 29 (1) ◽  
pp. 184
Author(s):  
M. Roshan ◽  
D. Dua ◽  
N. Saini ◽  
A. Sharma ◽  
T. Sharma ◽  
...  

The most important factors that lead to stress in farm animals are oxidative and thermal stress, leading to reduced reproductive efficiency. Oxidative stress leads to an increase in proportion of reactive oxygen species, whereas heat stress affects the physiology of animals, which lowers the conception rates of dairy cattle. In vitro culture systems have been enhanced by manipulating media with various supplements such as vitamins, growth factors, and antioxidants that have overcome these problems. Ascorbic acid has been shown to play an antioxidant role in many species such as sheep, goat, and pigs. Keeping this in mind, this study was conducted to investigate the effect of supplementation of in vitro-matured (IVM) and/or in vitro-cultured (IVC) media with ascorbic acid and evaluate its antioxidant role in in vitro development of buffalo embryos. Immature oocytes were collected from visible surface follicles (2 to 8 mm in diameter) in slaughterhouse buffalo ovaries and subjected to IVM, IVF, and IVC in a humidified CO2 incubator at 38.5°C. Ascorbic acid was supplemented to IVM [TCM-199 + 10% featl bovine serum (FBS) + 1 µg mL−1 oestradiol-17β + 5 µg mL−1 pFSH + 0.81 mM sodium pyruvate + 0.68 mM l-glutamine + 50 µg mL−1 gentamicin sulfate] at 50 or 100 µM or IVC (mCR2aa + 0.6% BSA + 10% FBS+ 50 µg mL−1 gentamicin sulfate) at 50 µM or both IVM and IVC media at 50 µM. Oocytes without ascorbic acid were treated as the control group. Cleavage and blastocyst rate was improved when 50 µM (66.67 ± 2.27; 16.67 ± 1.26%) ascorbic acid was supplemented to IVM medium but no significant difference (P < 0.05) was observed at 100 µM (54.04 ± 2.20; 6.16 ± 0.37%) as compared with the control (62.77 ± 2.71; 10.67 ± 0.24%), respectively. When 50 µM ascorbic acid was supplemented in IVM, IVC, or both media, though cleavage rate (66.67 ± 2.27; 69.09 ± 3.22; 66.67 ± 2.23%) was similar in 3 groups, a significant increase was observed in blastocyst rate (16.67 ± 1.26; 20.18 ± 0.86; 28.57 ± 0.37%) when both media were supplemented, respectively. To evaluate the thermoprotectant effect, 4 groups were taken: group 1 without and group 2 with ascorbic acid supplementation, oocytes were given heat treatment at 39.5°C initially for 12 h during IVM; group 3 without and group 4 with ascorbic acid supplementation, oocytes were given heat treatment at 40.5°C initially for 12 h during IVM. No significant difference in developmental rate was observed at elevated temperature of 39.5°C or 40.5°C as compared with the control. Relative mRNA abundance of heat stress-related genes, HSP 70.1 and HSP 70.2, was nonsignificantly higher in oocytes matured at 39.5°C or 40.5°C after supplementation with ascorbic acid as compared to control. Relative mRNA abundance of BAX decreased at 50 µM and increased at 100 µM ascorbic acid compared with control, whereas BID showed similar results between control and treatment. Regarding anti-apoptotic gene expression, significantly higher expression was observed in MCL1 for 50 µM and lower for 100 µM ascorbic acid, and a similar nonsignificant trend was observed for BCL-XL. Developmental genes GDF9 and BMP15 showed a nonsignificant increase in 50 µM, and a nonsignificant decrease in the 100 µM supplemented group as compared with the control. Oxidative stress-related genes SOD and GPX showed a nonsignificant decrease in treated groups as compared to control. From above results, it was concluded that ascorbic acid had an anti-oxidant as well as thermoprotectant role in developmental competence that increased the potential for generation of large domestic animal in vitro embryos for research and applied technologies such as cloning and transgenesis.


2020 ◽  
Vol 11 ◽  
Author(s):  
Marine Josephine Paupière ◽  
Yury Tikunov ◽  
Enrico Schleiff ◽  
Arnaud Bovy ◽  
Sotirios Fragkostefanakis

Plants respond to high temperatures with global changes of the transcriptome, proteome, and metabolome. Heat stress transcription factors (Hsfs) are the core regulators of transcriptome responses as they control the reprogramming of expression of hundreds of genes. The thermotolerance-related function of Hsfs is mainly based on the regulation of many heat shock proteins (HSPs). Instead, the Hsf-dependent reprogramming of metabolic pathways and their contribution to thermotolerance are not well described. In tomato (Solanum lycopersicum), manipulation of HsfB1, either by suppression or overexpression (OE) leads to enhanced thermotolerance and coincides with distinct profile of metabolic routes based on a metabolome profiling of wild-type (WT) and HsfB1 transgenic plants. Leaves of HsfB1 knock-down plants show an accumulation of metabolites with a positive effect on thermotolerance such as the sugars sucrose and glucose and the polyamine putrescine. OE of HsfB1 leads to the accumulation of products of the phenylpropanoid and flavonoid pathways, including several caffeoyl quinic acid isomers. The latter is due to the enhanced transcription of genes coding key enzymes in both pathways, in some cases in both non-stressed and stressed plants. Our results show that beyond the control of the expression of Hsfs and HSPs, HsfB1 has a wider activity range by regulating important metabolic pathways providing an important link between stress response and physiological tomato development.


1992 ◽  
Vol 36 (10) ◽  
pp. 733-737
Author(s):  
Debra A. Griffith ◽  
William Reddan ◽  
William Schmitz

This two-part study was undertaken to determine if increased heat stress was associated with the use of Tyvek® suits at a given temperature and workload, and the effect of ambient temperature on the level of heat stress experienced within the suit. In the first part of the study the independent variables were: ambient condition (22.2° C and 50% rh vs. 32.2° C and 60% rh) and workload (20% vs. 40% of maximum Vo2). The eight subjects ranged in age from 27 to 63, with equal numbers of men and women. Treadmill walking was used to simulate workload. Each experimental run lasted 45 minutes. In the second part, workload was fixed at 40% of maximum Vo2 and the suits were not worn. All other conditions were the same. Subjects (female, age 32; male, age 32; male, age 63) were chosen from the original eight. Results for the two parts were compared. Wearing the suit increased the heat stress upon an individual. Rectal temperature increased by an average of .17° C, heart rate by 16 bpm, average heat stored by 54 kcals, and average sweat loss by .73 liters/m2. Ambient temperature appeared to have a positive effect on the level of heat stress experienced within the suit. There were confounds, indicating a need for further study. It is recommended that ACGIH guidelines for work-rest ratio determination be followed, providing one adds 6°–11° C to the calculated ambient WBGT before entering the chart. These findings agree with the TLV WBGT Correction factors for clothing provided in the 1991 ACGIH guidelines on heat stress and the findings of Paull and Rosenthal (1987).


Sign in / Sign up

Export Citation Format

Share Document