scholarly journals SP/NK-1R Axis Promotes Perineural Invasion of Pancreatic Cancer and is Affected by lncRNA LOC389641

Author(s):  
Tengfei Ji ◽  
Keqiang Ma ◽  
Hongsheng Wu ◽  
Tiansheng Cao#

Abstract Background Pancreatic cancer is a deadly disease with low overall survival during the past 30 years. Perineural invasion (PNI) was considered to be the main reason for poor prognosis. In the present study, we analyzed the role of substance P (SP)/neurokinin-1 receptor (NK-1R) and long non-coding RNA (lncRNA) LOC389641 on pancreatic cancer PNI. Material and methods Pancreatic cancer cell lines of BxPC-3 and MIAPaCa-2 were co-cultured with SHSY5Y cells, and then stimulated with SP to simulate the in vivo influence of pancreatic cancer by ganglion. The co-culture cells were transfected with overexpressed neurokinin-1 receptor (NK-1R), silenced NK-1R, overexpressed LOC389641, and silenced LOC389641. Enzyme-linked immunosorbent assay (ELISA) assay was performed to examine the concentration of SP in cells. The cell proliferation ability was assessed by cell counting kit-8 and 5-ethynyl-2’-deoxyuridine (EdU) assays. The wound-healing and Transwell assays were carried out to determine the cell migration and invasion analyses. Quantitative real-time PCR (qRT-PCR), western blot, immunofluorescence (IF) analyses were performed to evaluate the expression levels. Results Addition of SP in co-culture system positively regulates cell proliferation, migration, and invasion of pancreatic cancer PNI. SP significantly stimulated NK-1R/Akt/NF-κB signaling pathway. The concentration of 100 nmol/L for 24h was chosen to be optimal for SP treatment.NK-1R positively regulated the proliferation, migration, and invasion of pancreatic cancer PNI. The expression of lncRNA LOC389641 and mRNA tumor necrosis factor receptor SF10A (TNFRSF10A) was not affected by SP. Overexpressed and silenced LOC389641 can correspondingly change the effect of SP stimulation on pancreatic cancer PNI. Conclusion We found that SP/NK-1R and LOC389641 promote the cell progression of pancreatic cancer PNI. Moreover, we assumed that the pancreatic cancer PNI promoted by SP/NK-1R axis may be blocked by the TNFRSF10A/NF-κB pathway mediated by LOC389641.

2021 ◽  
Author(s):  
Jie Hua ◽  
Qingcai Meng ◽  
Chen Liang ◽  
Miaoyan Wei ◽  
Jiang Liu ◽  
...  

Abstract Background: The aim of this study was to explore the role of leucine-rich α2-glycoprotein 1 (LRG1) in the biological function and prognosis of pancreatic cancer.Methods: LRG1 was detected in serum and tissue specimens from patients with pancreatic cancer by enzyme-linked immunosorbent assay (ELISA), qRT-PCR, western blotting, and immunohistochemical (IHC) analysis. LRG1-overexpressing and LRG1-knockdown cell lines were established with lentiviral vectors containing LRG1-overexpression and shRNA plasmids, respectively. Colony formation, Cell Counting Kit-8 (CCK-8), wound healing, Transwell migration, and in vivo tumorigenicity assays were conducted to assess proliferation and migration of the pancreatic cancer cells. RNA sequencing was performed to identify potential downstream molecules of LRG1.Results: Serum LRG1 levels were significantly elevated in patients with pancreatic cancer compared with healthy controls. The mRNA and protein levels of LRG1 were higher in cancer tissues than in adjacent normal tissues. High LRG1 expression was significantly associated with shorter overall survival and found to be an independent risk factor for poor prognosis. Additionally, LRG1 dramatically promoted cell proliferation and migration in vitro and accelerated tumor growth in vivo. By RNA sequencing, we identified Deltex (DTX)-3-like E3 ubiquitin ligase (DTX3L) as a potential downstream molecule of LRG1. Further validation experiments confirmed a positive correlation between LRG1 and DTX3L.Conclusions: LRG1 is a valuable prognostic marker for pancreatic cancer that plays a crucial role in cell proliferation and migration. Targeting LRG1 or the downstream molecule DTX3L provides a novel strategy for the treatment of pancreatic cancer.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jing Chen ◽  
Cui-Cui Zhao ◽  
Fei-Ran Chen ◽  
Guo-Wei Feng ◽  
Fei Luo ◽  
...  

Background. Pancreatic cancer is a malignant tumor of the digestive tract, which is difficult to diagnose and treat due to bad early diagnosis. We aimed to explore the role of kinesin superfamily 4A (KIF4A) in pancreatic ductal adenocarcinoma (PDAC). Methods. We first used the bioinformatic website to screen the data of pancreatic cancer in TCGA, and KIF4A protein was detected among the 86 specimens of patients in our hospital combined with clinic-pathological characteristics and survival analysis. KIF4A loss-expression cell lines were established by RNA interference (RNAi). In addition, we performed in vitro cell assays to detect the changes in cell proliferation, migration, and invasion. The proteins involved in the proliferation and metastasis of cancer cells were also detected by western blot. The above results could be proved in vivo. Further, the correlation between KIF4A and CDC5L was analyzed by TCGA and IHC data. Results. We first found a high expression of KIF4A in pancreatic cancer, suggesting a role of KIF4A in the development of pancreatic cancer. KIF4A was found to be differentially expressed ( P < 0.05 ) among the 86 specimens of patients in our hospital and was significantly associated with PDAC TNM stages and tumor size. High KIF4A expression also significantly worsened overall survival (OS) and disease-free survival rate (DFS) ( P < 0.05 , respectively). In addition, cell proliferation, migration, and invasion were inhibited by the KIF4A-shRNA group compared with the control ( P < 0.05 , respectively). In the end, knockdown of KIF4A could inhibit tumor development and metastasis in vivo. Further, the positive correlation between KIF4A and CDC5L existed, and KIF4A might promote pancreatic cancer proliferation by affecting CDC5L expression. Conclusion. In conclusion, the high expression level of KIF4A in PDAC was closely related to poor clinical and pathological status, lymphatic metastasis, and vascular invasion. KIF4A might be involved in promoting the development of PDAC in vitro and in vivo, which might be a new therapeutic target of PDAC.


Author(s):  
Xuhui Fan ◽  
Meng Liu ◽  
Li Fei ◽  
Zhihui Huang ◽  
Yufeng Yan

Circular RNA (circRNA) is a key regulator of tumor progression. However, the role of circFOXM1 in glioblastoma (GBM) progression is unclear. The aim of this study was to investigate the role of circFOXM1 in GBM progression. The expression levels of circFOXM1, miR-577 and E2F transcription factor 5 (E2F5) were examined by real-time quantitative PCR. Cell counting kit 8 assay, EdU staining and transwell assay were used to detect cell proliferation, migration, and invasion. The levels of glutamine, glutamate and α-ketoglutarate were determined to evaluate the glutaminolysis ability of cells. Protein expression was tested by western blot analysis. Dual-luciferase reporter assay, RNA pull-down assay and RNA immunoprecipitation assay were employed to verify the interaction between miR-577 and circFOXM1 or E2F5. Mice xenograft model for GBM was constructed to perform in vivo experiments. Our results showed that circFOXM1 was highly expressed in GBM tumor tissues and cells. Silencing of circFOXM1 inhibited GBM cell proliferation, migration, invasion, glutaminolysis, as well as tumor growth. MiR-577 could be sponged by circFOXM1, and its inhibitor could reverse the suppressive effect of circFOXM1 downregulation on GBM progression. E2F5 was a target of miR-577, and the effect of its knockdown on GBM progression was consistent with that of circFOXM1 silencing. CircFOXM1 positively regulated E2F5 expression, while miR-577 negatively regulated E2F5 expression. In conclusion, our data confirmed that circFOXM1 could serve as a sponge of miR-577 to enhance the progression of GBM by targeting E2F5, which revealed that circFOXM1 might be a biomarker for GBM treatment.


2021 ◽  
Author(s):  
Wenpeng Cao ◽  
Zhirui Zeng ◽  
Runsang Pan ◽  
Zhiwei He ◽  
Hao Wu ◽  
...  

Abstract Background: Hypoxia participated in the occurrence and development of pancreatic cancer (PC). However, genes associated with hypoxia respond and their regulated mechanism in PC cells were unclear. The current research was aimed to illuminate the role and hypoxia regulated mechanism of fucosyltransferase 11 (FUT11) in the progression of PC.Methods: After predicting FUT11 as a key hypoxia associated gene in PC using bioinformatics analysis. The expression of FUT11 in PC using quantitative real-time fluorescent PCR, western blot and immunohistochemistry. The effects of FUT11 on PC cells proliferation, migration and invasion under normoxia and hypoxia were detected using Cell Counting Kit 8, 5-ethynyl-2’-deoxyuridine assay, colony formation assay and transwell assay. Spleen capsule injected liver metastasis and subcutaneously injected model were performed to confirm the effects of FUT11 in vivo. Furthermore, western blot, luciferase assay and immunoprecipitation were performed to explore the regulated relationship among FUT11, hypoxia-inducible factor 1α (HIF1α) and pyruvate dehydrogenase kinase 1 (PDK1) in PC.Results: FUT11 was markedly increased of PC cells in hypoxia, up-regulated in the PC clinical tissues, and predicted a poor outcome. Inhibition of FUT11 reduced PC cell growth and mobility of PC cells under normoxia and hypoxia conditions in vitro, and growth and mobility in vivo. FUT11 bind with PDK1 and regulated the expression PDK1 under normoxia and hypoxia. FUT11 knockdown significantly increased the degradation rate of PDK1 under hypoxia, while treatment with MG132 can relieve the degradation of PDK1 induced by FUT11 knockdown. Overexpression of PDK1 in PC cells under hypoxia conditions reversed the suppressiv impacts of FUT11 knockdown on PC cell growth and mobility. In addition, HIF1α bound to the enhancer of FUT11 and increased its expression, as well as co-expressing with FUT11 in PC tissues. Furthermore, overexpress of FUT11 partially rescued the suppressiv effects of HIF1α knockdown on PC cell growth and mobility in hypoxia conditions.Conclusion: Our data further implicate that hypoxia-induced FUT11 in PC contributes to proliferation and metastasis by maintaining the stability of PDK1, and suggest FUT11 maybe a novel and effective target for treatment of pancreatic cancer.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Fanyong Qu ◽  
Lina Wang ◽  
Caiyan Wang ◽  
Lingxia Yu ◽  
Kaikai Zhao ◽  
...  

Abstract Background Chemoresistance is one of the major obstacles for cancer therapy in the clinic. Circular RNAs (circRNAs) are involved in the pathogenesis of esophageal squamous cell carcinoma (ESCC) and chemoresistance. This study aimed to explore the role and molecular mechanism of circ_0006168 in Taxol resistance of ESCC. Methods The expression levels of circ_0006168, microRNA-194-5p (miR-194-5p) and jumonji domain containing 1C (JMJD1C) were measured by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. The half-inhibition concentration (IC50) value of Taxol was evaluated by Cell Counting Kit-8 (CCK-8) assay. Cell proliferation was evaluated by CCK-8 and colony formation assays. Cell migration and invasion were detected by transwell assay. Cell apoptosis was determined by flow cytometry. The interaction between miR-194-5p and circ_0006168 or JMJD1C was predicted by bioinformatics analysis (Circinteractome and TargetScan) and verified by dual-luciferase reporter and RNA Immunoprecipitation (RIP) and RNA pull-down assays. The mice xenograft model was established to investigate the roles of circ_0006168 in vivo. Results Circ_0006168 and JMJD1C were upregulated and miR-194-5p was downregulated in ESCC tissues, ESCC cells, and Taxol-resistant cells. Functionally, knockdown of circ_0006168 or JMJD1C increased Taxol sensitivity of ESCC in vitro via inhibiting cell proliferation, migration and invasion, and promoting apoptosis. Moreover, circ_0006168 could directly bind to miR-194-5p and JMJD1C was verified as a direct target of miR-194-5p. Mechanically, circ_0006168 was a sponge of miR-194-5p to regulate JMJD1C expression in ESCC cells. Furthermore, JMJD1C overexpression reversed the promotive effect of circ_0006168 knockdown on Taxol sensitivity. Besides, circ_0006168 silence suppressed tumor growth in vivo. Conclusion Circ_0006168 facilitated Taxol resistance in ESCC by regulating miR-194-5p/JMJD1C axis, providing a promising therapeutic target for ESCC chemotherapy.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Zhiping Fu ◽  
Xing Liang ◽  
Ligang Shi ◽  
Liang Tang ◽  
Danlei Chen ◽  
...  

AbstractPancreatic cancer is a highly lethal malignancy due to failures of early detection and high metastasis in patients. While certain genetic mutations in tumors are associated with severity, the molecular mechanisms responsible for cancer progression are still poorly understood. Synaptotagmin-8 (SYT8) is a membrane protein that regulates hormone secretion and neurotransmission, and its expression is positively regulated by the promoter of the insulin gene in pancreatic islet cells. In this study, we identified a previously unknown role of SYT8 in altering tumor characteristics in pancreatic cancer. SYT8 levels were upregulated in patient tumors and contributed towards increased cell proliferation, migration, and invasion in vitro and in vivo. Increased SYT8 expression also promoted tumor metastasis in an in vivo tumor metastasis model. Furthermore, we showed that SYT8-mediated increase in tumorigenicity was regulated by SIRT1, a protein deacetylase previously known to alter cell metabolism in pancreatic lesions. SIRT1 expression was altered by orphan nuclear receptor ERRα and troponin-1 (TNNI2), resulting in cell proliferation and migration in an SYT8-dependent manner. Together, we identified SYT8 to be a central regulator of tumor progression involving signaling via the SIRT1, ERRα, and TNNI2 axis. This knowledge may provide the basis for the development of therapeutic strategies to restrict tumor metastasis in pancreatic cancer.


2018 ◽  
Vol 51 (3) ◽  
pp. 1364-1375 ◽  
Author(s):  
Dan Fei ◽  
Xiaona Zhang ◽  
Jinxiang Liu ◽  
Long Tan ◽  
Jie Xing ◽  
...  

Background/Aims: Novel long non-coding RNA Fer-1-like protein 4 (FER1L4) has been reported to play crucial regulatory roles in tumor progression. However, its clinical significance and biological role in osteosarcoma (OS) is completely unknown. The aim of the present study was to investigate the role of FER1L4 in OS progression and the underlying mechanism. Methods: We analyzed the expression levels of FER1L4 in tissues of OS patients and cell lines via quantitative RT-PCR (qRT-PCR). The effect of FER1L4 on cell proliferation, colony formation, migration and invasion was analyzed by cell counting kit-8 (CCK-8), colony formation, wound healing and transwell invasion assay, respectively. Novel targets of FER1L4 were selected through a bioinformatics soft and confirmed using a dual-luciferase reporter system and qRT-PCR. To detect the role of FER1L4 in vivo tumorigenesis, tumor xenografts were created. Results: We found that the expression of FER1L4 was significantly downregulated in OS tissues and cell lines; moreover, low expression of FER1L4 was associated with advanced tumor-nude-metastasis (TNM) stage, lymph node metastases, and poor overall survival. Functional assays showed that upregulation of FER1L4 significantly inhibited OS cell proliferation, colony formation, migration, and invasion in vitro, as well as suppressed tumor growth in vivo. Assays performed to determine the underlying mechanism, indicated that FER1L4 interacted directly with miR-18a-5p. Subsequently, we found that FER1L4 significantly increased PTEN expression, a known target of miR-18a-5p, in OS cells. Furthermore, PTEN was found to be down-regulated, and positively correlated with FER1L4 in OS tissues. Conclusion: These findings suggest that FER1L4, acting as a competing endogenous RNA (ceRNA) of miR-18a-5p, exerts its anti-cancer role by modulating the expression of PTEN. Thus, FER1L4 may be a novel target for the prevention and treatment of OS.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Bo Tang ◽  
Yihua Yang ◽  
Min Kang ◽  
Yunshan Wang ◽  
Yan Wang ◽  
...  

Abstract Background Pancreatic cancer is one of the most lethal types of cancer with extremely poor diagnosis and prognosis, and chemo-resistance remains a major challenge. The dynamic and reversible N6-methyladenosine (m6A) RNA modification has emerged as a new layer of epigenetic gene regulation. Methods qRT-PCR and IHC were applied to examine ALKBH5 levels in normal and pancreatic cancer tissues. Cancer cell proliferation and chemo-resistance were evaluated by clonogenic formation, chemosensitivity detection, and Western blotting assays. m6A-seq was performed to identify target genes. We evaluated the inhibitory effect of ALKBH5 in both in vivo and in vitro models. Results Here, we show that m6A demethylase ALKBH5 is downregulated in gemcitabine-treated patient-derived xenograft (PDX) model and its overexpression sensitized pancreatic ductal adenocarcinoma (PDAC) cells to chemotherapy. Decreased ALKBH5 levels predicts poor clinical outcome in PDAC and multiple other cancers. Furthermore, silencing ALKBH5 remarkably increases PDAC cell proliferation, migration, and invasion both in vitro and in vivo, whereas its overexpression causes the opposite effects. Global m6A profile revealed altered expression of certain ALKBH5 target genes, including Wnt inhibitory factor 1 (WIF-1), which is correlated with WIF-1 transactivation and mediation of the Wnt pathway. Conclusions Our work uncovers the tumor suppressive and chemo-sensitizing function for ALKBH5, which provides insight into critical roles of m6A methylation in PDAC.


Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 104-116
Author(s):  
Xiaobo Chen ◽  
Hongwen Sun ◽  
Yunping Zhao ◽  
Jing Zhang ◽  
Guosheng Xiong ◽  
...  

AbstractBackgroundThe aim of this study was to investigate the circ_0004370 expression in EC, its effects on cell proliferation, apoptosis, migration, invasion, and epithelial–mesenchymal transition (EMT) process, and the underlying regulatory mechanisms in EC.MethodsThe protein levels of COL1A1 and EMT-related proteins were detected by western blot. The role of circ_0004370 on cell viability, proliferation, and apoptosis was analyzed by Cell Counting Kit-8 (CCK-8) assay, colony formation assay, and flow cytometry, respectively. The transwell assay was used to examine cell migration and invasion. The binding sites between miR-1301-3p and circ_0004370 or COL1A1 were predicted by starbase software and confirmed by dual-luciferase reporter assay and RNA pull-down assay.ResultsWe discovered that circ_0004370 was remarkably upregulated in EC tissues and cells. Knockdown of circ_0004370 inhibited cell proliferation, migration as well as invasion, and promoted apoptosis in vitro, while its effect was rescued by miR-1301-3p inhibition. And circ_0004370 mediated the EMT process in EC cells. Moreover, we explored its regulatory mechanism and found that circ_0004370 directly bound to miR-1301-3p and COL1A1 was verified as a target of miR-1301-3p. COL1A1 was highly expressed in EC cells and upregulation of COL1A1 reversed the effects of miR-1301-3p on cell proliferation, migration, invasion, and apoptosis. In addition, silencing of circ_0004370 reduced tumor volumes and weights in vivo. We showed that circ_0004370/miR-1301-3p/COL1A1 axis played the critical role in EC to regulate the cell activities.ConclusionCirc_0004370 promotes EC proliferation, migration and invasion, and EMT process and suppresses apoptosis by regulating the miR-1301-3p/COL1A1 axis, indicating that circ_0004370 may be used as a potential therapeutic target for EC.


Sign in / Sign up

Export Citation Format

Share Document