scholarly journals Description of laminar-turbulent transition of an airfoil boundary layer measured by differential image thermography using directed percolation theory

Author(s):  
Tom Wester ◽  
Joachim Peinke ◽  
Gerd Gülker

Abstract Transition from laminar to turbulent flow is still a challenging problem. Recent studies indicate a good agreement when describing this phase transition with the directed percolation theory. This study presents a new experimental approach by means of differential image thermography (DIT) enabling to investigate this transition on the suction side of a heated airfoil. The results extend the applicability of the directed percolation theory to describe the transition on curves surfaces. The experimental effort allows for the first time an agreement between all three universal exponents of the (1+1)D directed percolation for such airfoil application. Furthermore, this study proves that the theory holds for a wide range of flows, as shown by the various conditions tested. Such a large parameter space was not covered in any examination so far. The findings underline the significance of percolation models in fluid mechanics and show that this theory can be used as a high precision tool for the problem of transition to turbulence.

Author(s):  
Anil K. Tolpadi ◽  
Michael E. Crawford

The heat transfer and aerodynamic performance of turbine airfoils are greatly influenced by the gas side surface finish. In order to operate at higher efficiencies and to have reduced cooling requirements, airfoil designs require better surface finishing processes to create smoother surfaces. In this paper, three different cast airfoils were analyzed: the first airfoil was grit blasted and codep coated, the second airfoil was tumbled and aluminide coated, and the third airfoil was polished further. Each of these airfoils had different levels of roughness. The TEXSTAN boundary layer code was used to make predictions of the heat transfer along both the pressure and suction sides of all three airfoils. These predictions have been compared to corresponding heat transfer data reported earlier by Abuaf et al. (1997). The data were obtained over a wide range of Reynolds numbers simulating typical aircraft engine conditions. A three-parameter full-cone based roughness model was implemented in TEXSTAN and used for the predictions. The three parameters were the centerline average roughness, the cone height and the cone-to-cone pitch. The heat transfer coefficient predictions indicated good agreement with the data over most Reynolds numbers and for all airfoils-both pressure and suction sides. The transition location on the pressure side was well predicted for all airfoils; on the suction side, transition was well predicted at the higher Reynolds numbers but was computed to be somewhat early at the lower Reynolds numbers. Also, at lower Reynolds numbers, the heat transfer coefficients were not in very good agreement with the data on the suction side.


2011 ◽  
Vol 1370 ◽  
Author(s):  
A.I. Shkrebtii ◽  
J. Heron ◽  
J.L. Cabellos ◽  
N. Witkowski ◽  
O. Pluchery ◽  
...  

ABSTRACTWe investigate theoretically and experimentally the temperature-dependent linear optical properties of the clean c(4×2) reconstructed Si(100) surface for a wide range of temperatures. We combine two theoretical formalisms: the first one incorporates the contribution of temperature-dependent atomic motion to the surface optical response and, the second uses a dielectric function layer-by-layer separation method. Using these formalisms, we model temperature-dependent reflectance anisotropy (RA) of this surface for the first time: finite temperature ab-initio Car-Parrinello Molecular Dynamics (CPMD) at different temperatures up to 1000 K provide temperature-dependent atomic structural inputs for optical calculations and subsequent average of dielectric functions. Experimentally, one-domain c(4x2) Si(100) surface was prepared and characterised by Reflectance Anisotropy Spectroscopy (RAS) in a temperature range between 300 K and 800 K. Good agreement between experiment and theory is demonstrated, including a temperature-induced red shift of both the surface and bulk optical peaks. Theoretical results indicate that the temperature-induced modification of the optical response is substantially more pronounced for the surface than for the bulk.


2020 ◽  
Author(s):  
Jérémie Vasseur ◽  
Fabian Wadsworth ◽  
Donald Dingwell

<p>Measurements abound for the permeability of volcanic rocks, high temperature magmas, synthetic analogues for magma and rock, and 3-dimensional domains of porous media simulated numerically. Despite a wealth of data, the dominant approach to parameterisation has been empirical, and scarcely goes beyond the power-law models for percolating systems. Here we propose a suite of methods to bring the data for these complex systems in line with theoretically grounded percolation models. To do this we create numerical samples using variations on theme of overlapping spheres filling volumes. In order to create a wide range of possible geometries, we can either define the spheres as the pore phase, or the inter-sphere volume as the pore phase, such that one option is the inverse of the other. In either case, we simulate fluid flow through the pore phase until steady state, to determine the Darcian and inertial permeability tensors. We compare these results with derived, fully theoretical percolation theory and find good agreement without fitting parameters. In order to render this useful for understanding permeability in volcanic scenarios, we compare these validated models to a large database of compiled published permeability data. This approach allows us to group the permeability of magmas into three universality classes, which each have just one dimensionless solution: (1) initially granular magmas, such as variably welded ignimbrites or tuffisites, and (2) bubbly magmas, such as pumice.</p>


2012 ◽  
Vol 2 (1) ◽  
Author(s):  
Abdol Sohouli ◽  
Amin Kimiaeifar ◽  
Afshin Mohsenzadeh ◽  
Saeed Mohebpour

AbstractLarge deformation of a horizontally uniform cantilevered Euler-Bernoulli beamshell subjected to its own weight is studied. The governing equation for the first time is analytically solved using the analytical technique for nonlinear problems Homotopy Analysis Method (HAM). A series solution is presented that can be used for the analysis of beamshells undergoing large deformations with wide range of weight, material/cross section properties and lengths. The results obtained by HAM are compared with the results reported in the previous works, and good agreement is found. Finally, the load-displacement characteristics of a uniform cantilever beamshell under different load conditions, dimensionless weight parameter are presented.


2020 ◽  
pp. 63-72
Author(s):  
Yu. Olefir ◽  
E. Sakanyan ◽  
I. Osipova ◽  
V. Dobrynin ◽  
M. Smirnova ◽  
...  

The entry of a wide range of biotechnological products into the pharmaceutical market calls for rein-forcement of the quality, efficacy and safety standards at the state level. The following general monographs have been elaborated for the first time to be included into the State Pharmacopoeia of the Russian Federation, XIV edition: "Viral safety" and "Reduction of the risk of transmitting animal spongiform encephalopathy via medicinal products". These general monographs were elaborated taking into account the requirements of foreign pharmacopoeias and the WHO recommendations. The present paper summarises the key aspects of the monographs.


Author(s):  
Petros Bouras-Vallianatos

Byzantine medicine is still a little-known and misrepresented field not only in the wider arena of debates on medieval medicine but also among Byzantinists. Byzantine medical literature is often viewed as ‘stagnant’ and mainly preserving ancient ideas; and our knowledge of it continues to be based to a great extent on the comments of earlier authorities, which are often repeated uncritically. This book presents the first comprehensive examination of the medical corpus of, arguably, the most important late Byzantine physician John Zacharias Aktouarios (c.1275–c.1330). The main thesis is that John’s medical works show an astonishing degree of openness to knowledge from outside Byzantium combined with a significant degree of originality, in particular, in the fields of uroscopy, pharmacology, and human physiology. The analysis of John’s edited (On Urines and On Psychic Pneuma) and unedited (Medical Epitome) works is supported for the first time by the consultation of a large number of manuscripts. The study is also informed by evidence from a wide range of medical sources, including previously unpublished ones, and texts from other genres, such as epistolography and merchants’ accounts. The contextualization of John’s works sheds new light on the development of Byzantine medical thought and practice, and enhances our understanding of the late Byzantine social and intellectual landscape. Finally, John’s medical observations are also examined in the light of examples from the medieval Latin and Islamic worlds, placing his medical theories in the wider Mediterranean milieu and highlighting the cultural exchange between Byzantium and its neighbours.


Author(s):  
Noel Malcolm

This book of essays covers a wide range of topics in the history of Albania and Kosovo. Many of the essays illuminate connections between the Albanian lands and external powers and interests, whether political, military, diplomatic or religious. Such topics include the Habsburg invasion of Kosovo in 1689, the manoeuvrings of Britain and France towards the Albanian lands during the Napoleonic Wars, the British interest in those lands in the late nineteenth century, and the Balkan War of 1912. On the religious side, essays examine ‘crypto-Christianity’ in Kosovo during the Ottoman period, the stories of conversion to Islam revealed by Inquisition records, the first theological treatise written in Albanian (1685), and the work of the ‘Apostolic Delegate’ who reformed the Catholic Church in early twentieth-century Albania. Some essays bring to life ordinary individuals hitherto unknown to history: women hauled before the Inquisition, for example, or the author of the first Albanian autobiography. The longest essay, on Ali Pasha, tells for the first time the full story of the role he played in the international politics of the Napoleonic Wars. Some of these studies have been printed before (several in hard-to-find publications, and one only in Albanian), but the greater part of this book appears here for the first time. This is not only a contribution to Albanian and Balkan history it also engages with many broader issues, including religious conversion, methods of enslavement within the Ottoman Empire, and the nature of modern myth-making about national identity.


The recycling and reuse of materials and objects were extensive in the past, but have rarely been embedded into models of the economy; even more rarely has any attempt been made to assess the scale of these practices. Recent developments, including the use of large datasets, computational modelling, and high-resolution analytical chemistry, are increasingly offering the means to reconstruct recycling and reuse, and even to approach the thorny matter of quantification. Growing scholarly interest in the topic has also led to an increasing recognition of these practices from those employing more traditional methodological approaches, which are sometimes coupled with innovative archaeological theory. Thanks to these efforts, it has been possible for the first time in this volume to draw together archaeological case studies on the recycling and reuse of a wide range of materials, from papyri and textiles, to amphorae, metals and glass, building materials and statuary. Recycling and reuse occur at a range of site types, and often in contexts which cross-cut material categories, or move from one object category to another. The volume focuses principally on the Roman Imperial and late antique world, over a broad geographical span ranging from Britain to North Africa and the East Mediterranean. Last, but not least, the volume is unique in focusing upon these activities as a part of the status quo, and not just as a response to crisis.


Author(s):  
Toshihiro Kaneko ◽  
Kenji Yasuoka ◽  
Ayori Mitsutake ◽  
Xiao Cheng Zeng

Multicanonical molecular dynamics simulations are applied, for the first time, to study the liquid-solid and solid-solid transitions in Lennard-Jones (LJ) clusters. The transition temperatures are estimated based on the peak position in the heat capacity versus temperature curve. For LJ31, LJ58 and LJ98, our results on the solid-solid transition temperature are in good agreement with previous ones. For LJ309, the predicted liquid-solid transition temperature is also in agreement with previous result.


1998 ◽  
Vol 162 ◽  
pp. 100-105
Author(s):  
Andrew J. Norton ◽  
Mark H. Jones

The Open University is the UK's foremost distance teaching university. For over twenty five years we have been presenting courses to students spanning a wide range of degree level and vocational subjects. Since we have no pre-requisites for entry, a major component of our course profile is a selection of foundation courses comprising one each in the Arts, Social Science, Mathematics, Technology and Science faculties. The Science Faculty's foundation course is currently undergoing a substantial revision. The new course, entitled “S103: Discovering Science”, will be presented to students for the first time in 1998.


Sign in / Sign up

Export Citation Format

Share Document