scholarly journals Ionic Liquids Based on Chromotropic Acid: Excellent Lubricating Additives for Aqueous System

Author(s):  
Peng Wang ◽  
Peng Gao ◽  
Lin Ma ◽  
Ping Wen ◽  
Yunyan Han ◽  
...  

Abstract In this paper, four ionic liquids based on chromotropate (CAILs) were prepared and applied to heighten the tribological performance of aqueous system on different metal friction contacts. Taking for the potential choice for water-based lubricating additive, CAILs exhibited excellent water solubility and corrosion resistance. Tribological results showed that the CAILs, especially the phenolic hydroxyl group decorated samples (TsnN4444 and TsnP4444), demonstrated extremely effective lubricating properties with the efficient friction and wear descent (69% and 83% for Fe, 47% and 94% for Cu, 74% and 69% for Al, respectively). Especially, the excellent load-carrying capacity was also presented with the highest PB (833N) and PD (1568N) values for TsnP4444. It is speculated that the CAIL molecular adsorption on the interface and further generation of tribochemical films are beneficial for their lubricating effects. resulting from the systematic discussion and analysis of CA, QCM, SEM, XPS, and FIB-TEM tests. However, TsN4444 and TsP4444 showed less effective lubricating performances and poor load-carrying capacities due to tribocorrosion of hydroxyl groups at the interface.

2019 ◽  
Vol 72 (5) ◽  
pp. 392 ◽  
Author(s):  
Yohsuke Nikawa ◽  
Seiji Tsuzuki ◽  
Hiroyuki Ohno ◽  
Kyoko Fujita

We investigated the hydration states of cholinium phosphate-type ionic liquids (ILs) in relation to ion structure, focusing on the influence of the hydroxyl group of the cation and the alkyl chain length of the anion. Water activity measurements provided information on the macroscopic hydration states of the hydrated ILs, while NMR measurements and molecular dynamics simulations clearly showed the microscopic interactions and coordination of the water molecules. The hydrogen bonding networks in these ILs were influenced by the anion structure and water content, and the mobility of water molecules was influenced by the number of hydroxyl groups in the cation and anion.


2010 ◽  
Vol 146-147 ◽  
pp. 1147-1153 ◽  
Author(s):  
Xi Feng Li ◽  
Zong Gang Mu ◽  
Xiao Xuan Wang ◽  
Shu Xiang Zhang ◽  
Yong Min Liang ◽  
...  

A series of room temperature ionic liquids bearing hydroxyl groups, namely 1-(3’-hydroxyl-n-propyl)-3-alkylimidazolium tetrafluoroborate or hexafluorophosphate, were prepared and characterized. Their typical physical properties were also determined. The tribological test results show that these ionic liquids possess better friction-reducing and anti-wear ability for aluminum-on-steel system than lubricant X-1P. The friction coefficients of them are little higher than that of the nonfunctionlized ionic liquid LP308, while they possess better anti-wear abilities than the latter, which may ascribe to the chemical activity of hydroxyl group. Both the anions and the side substituted alkyl chains attached to the imidazolium cations affect the tribological performance of the lubricants. The SEM, EDS and XPS analysis of the worn surfaces show that complicated tribo-chemical reactions were involved in the sliding process. The boundary films composed of fluorides, nitrogen oxide, BN, and FePO4 were generated on the rubbing aluminum surfaces, which contribute to effectively decreasing the friction and wear of the contacts.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6421
Author(s):  
Sitong Wu ◽  
Guanglin Chen ◽  
Qiang Zhang ◽  
Guangdi Wang ◽  
Qiao-Hong Chen

To search for novel androgen receptor (AR) modulators for the potential treatment of castration-resistant prostate cancer (CRPC), naturally occurring silibinin was sought after as a lead compound because it possesses a moderate potency towards AR-positive prostate cancer cells and its chemical scaffold is dissimilar to all currently marketed AR antagonists. On the basis of the structure–activity relationships that we have explored, this study aims to incorporate carbamoyl groups to the alcoholic hydroxyl groups of silibinin to improve its capability in selectively suppressing AR-positive prostate cancer cell proliferation together with water solubility. To this end, a feasible approach was developed to regioselectively introduce a carbamoyl group to the secondary alcoholic hydroxyl group at C-3 without causing the undesired oxidation at C2–C3, providing an avenue for achieving 3-O-carbamoyl-5,7,20-O-trimethylsilybins. The application of the synthetic method can be extended to the synthesis of 3-O-carbamoyl-3′,4′,5,7-O-tetramethyltaxifolins. The antiproliferative potency of 5,7,20-O-trimethylsilybin and its nine 3-carbamoyl derivatives were assessed in an AR-positive LNCaP prostate cancer cell line and two AR-null prostate cancer cell lines (PC-3 and DU145). Our preliminary bioassay data imply that 5,7,20-O-trimethylsilybin and four 3-O-carbamoyl-5,7,20-O-trimethylsilybins emerge as very promising lead compounds due to the fact that they can selectively suppress AR-positive LNCaP cell proliferation. The IC50 values of these five 5,7,20-O-trimethylsilybins against the LNCaP cells fall into the range of 0.11–0.83 µM, which exhibit up to 660 times greater in vitro antiproliferative potency than silibinin. Our findings suggest that carbamoylated 5,7,20-O-trimethylsilybins could serve as a natural product-based scaffold for new antiandrogens for lethal castration-resistant prostate cancer.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2131
Author(s):  
Leonardo Dalseno Antonino ◽  
Júlia Rocha Gouveia ◽  
Rogério Ramos de Sousa Júnior ◽  
Guilherme Elias Saltarelli Garcia ◽  
Luara Carneiro Gobbo ◽  
...  

Several efforts have been dedicated to the development of lignin-based polyurethanes (PU) in recent years. The low and heterogeneous reactivity of lignin hydroxyl groups towards diisocyanates, arising from their highly complex chemical structure, limits the application of this biopolymer in PU synthesis. Besides the well-known differences in the reactivity of aliphatic and aromatic hydroxyl groups, experimental work in which the reactivity of both types of hydroxyl, especially the aromatic ones present in syringyl (S-unit), guaiacyl (G-unit), and p-hydroxyphenyl (H-unit) building units are considered and compared, is still lacking in the literature. In this work, the hydroxyl reactivity of two kraft lignin grades towards 4,4′-diphenylmethane diisocyanate (MDI) was investigated. 31P NMR allowed the monitoring of the reactivity of each hydroxyl group in the lignin structure. FTIR spectra revealed the evolution of peaks related to hydroxyl consumption and urethane formation. These results might support new PU developments, including the use of unmodified lignin and the synthesis of MDI-functionalized biopolymers or prepolymers.


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 154-161 ◽  
Author(s):  
Gao Yurong ◽  
Li Dapeng

AbstractCorn starch/polyvinyl alcohol (PVA)/glycerol composite films incorporated with ε-polylysine were prepared, and their properties were investigated. The Fourier-transform infrared (FTIR) spectroscopy indicated that the interactions happened between the amino group of ε-polylysine and hydroxyl group starch/PVA composite films. X-ray diffraction (XRD) analysis showed that the addition of ε-polylysine decreased the intensity of all crystal peaks. Thermogravimetric (TGA) analysis suggested that ε-polylysine improved the thermal stability of composite films. Scanning electron microscopic (SEM) analysis showed that the upper surface of composite films incorporated with ε-polylysine presented more compact and flat surface. The antimicrobial activity of the composite film progressively increased with the increasing of ε-polylysine concentration (P < 0.05). The tensile strength, elongation at break and water absorption significantly increased, whereas water solubility decreased with the increasing of ε-polylysine concentration (P < 0.05). Therefore, the corn starch/PVA/glycerol composite films incorporated with ε-polylysine had good mechanical, physical and antimicrobial properties and could have potential application as a novel antimicrobial packaging material.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4158
Author(s):  
Patrycja Glińska ◽  
Andrzej Wolan ◽  
Wojciech Kujawski ◽  
Edyta Rynkowska ◽  
Joanna Kujawa

There has been an ongoing need to develop polymer materials with increased performance as proton exchange membranes (PEMs) for middle- and high-temperature fuel cells. Poly(vinyl alcohol) (PVA) is a highly hydrophilic and chemically stable polymer bearing hydroxyl groups, which can be further altered. Protic ionic liquids (proticILs) have been found to be an effective modifying polymer agent used as a proton carrier providing PEMs’ desirable proton conductivity at high temperatures and under anhydrous conditions. In this study, the novel synthesis route of PVA grafted with fluorinated protic ionic liquids bearing sulfo groups (–SO3H) was elaborated. The polymer functionalization with fluorinated proticILs was achieved by the following approaches: (i) the PVA acylation and subsequent reaction with fluorinated sultones and (ii) free-radical polymerization reaction of vinyl acetate derivatives modified with 1-methylimidazole and sultones. These modifications resulted in the PVA being chemically modified with ionic liquids of protic character. The successfully grafted PVA has been characterized using 1H, 19F, and 13C-NMR and FTIR-ATR. The presented synthesis route is a novel approach to PVA functionalization with imidazole-based fluorinated ionic liquids with sulfo groups.


Coatings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 21
Author(s):  
Javier Faes ◽  
Rubén González ◽  
Antolin Hernández Battez ◽  
David Blanco ◽  
Alfonso Fernández-González ◽  
...  

This research deals with the tribological behavior and corrosion performance of three novel fatty acid anion-based ionic liquids (FAILs): methyltrioctylammonium hexanoate ([N8,8,8,1][C6:0]), methyltrioctylammonium octadecanoate ([N8,8,8,1][C18:0]) and methyltrioctylammonium octadec-9-enoate ([N8,8,8,1][C18:1]), employed for the first time as neat lubricant with five different material pairs: steel–steel, steel–aluminum alloy, steel–bronze, steel–cast iron and steel–tungsten carbide. These novel substances were previously obtained from fatty acids via metathesis reactions, identified structurally via NMR (nuclear magnetic resonance) and FTIR (Fourier-transform infrared spectroscopy) techniques, and then characterized from a physicochemical (density, water solubility, viscosity, viscosity index and refractive index) and environmental (bacterial toxicity and biodegradability) points of view. The corrosion behavior of the three FAILs was studied by exposure at room temperature, while friction and wear tests were performed with a reciprocating ball-on-disc configuration. The main results and conclusions obtained were: (1) Corrosion in the presence of the three FAILs is observed only on the bronze surface; (2) All FAILs presented similar tribological behavior as lubricants for each tested material pair; (3) XPS (X-ray photoelectron spectroscopy) analysis indicated that the surface behavior of the three FAILs in each material pair was similar, with low chemical interaction with the surfaces.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2575
Author(s):  
Smaher M. Elbayomi ◽  
Haili Wang ◽  
Tamer M. Tamer ◽  
Yezi You

The preparation of bioactive polymeric molecules requires the attention of scientists as it has a potential function in biomedical applications. In the current study, functional substitution of alginate with a benzoyl group was prepared via coupling its hydroxyl group with benzoyl chloride. Fourier transform infrared spectroscopy indicated the characteristic peaks of aromatic C=C in alginate derivative at 1431 cm−1. HNMR analysis demonstrated the aromatic protons at 7.5 ppm assigned to benzoyl groups attached to alginate hydroxyl groups. Wetting analysis showed a decrease in hydrophilicity in the new alginate derivative. Differential scanning calorimetry and thermal gravimetric analysis showed that the designed aromatic alginate derivative demonstrated higher thermo-stability than alginates. The aromatic alginate derivative displayed high anti-inflammatory properties compared to alginate. Finally, the in vitro antioxidant evaluation of the aromatic alginate derivative showed a significant increase in free radical scavenging activity compared to neat alginate against DPPH (2,2-diphenyll-picrylhydrazyl) and ABTS free radicals. The obtained results proposed that the new alginate derivative could be employed for gene and drug delivery applications.


2011 ◽  
Vol 77 (9) ◽  
pp. 3023-3034 ◽  
Author(s):  
Ya-Jie Tang ◽  
Wei Zhao ◽  
Hong-Mei Li

ABSTRACTAccording to the structure of podophyllotoxin and its structure-function relationship, a novel tandem biotransformation process was developed for the directional modification of the podophyllotoxin structure to directionally synthesize a novel compound, 4-(2,3,5,6-tetramethylpyrazine-1)-4′-demethylepipodophyllotoxin (4-TMP-DMEP). In this novel tandem biotransformation process, the starting substrate of podophyllotoxin was biotransformed into 4′-demethylepipodophyllotoxin (product 1) with the demethylation of the methoxyl group at the 4′ position byGibberella fujikuroiSH-f13, which was screened out from Shennongjia prime forest humus soil (Hubei, China). 4′-Demethylepipodophyllotoxin (product 1) was then biotransformed into 4′-demethylpodophyllotoxone (product 2) with the oxidation of the hydroxyl group at the 4 position byAlternaria alternataS-f6, which was screened out from the gatheredDysosma versipellisplants in the Wuhan Botanical Garden, Chinese Academy of Sciences. Finally, 4′-demethylpodophyllotoxone (product 2) and ligustrazine were linked with a transamination reaction to synthesize the target product 4-TMP-DMEP (product 3) byAlternaria alternataS-f6. Compared with podophyllotoxin (i.e., a 50% effective concentration [EC50] of 529 μM), the EC50of 4-TMP-DMEP against the tumor cell line BGC-823 (i.e., 0.11 μM) was significantly reduced by 5,199 times. Simultaneously, the EC50of 4-TMP-DMEP against the normal human proximal tubular epithelial cell line HK-2 (i.e., 0.40 μM) was 66 times higher than that of podophyllotoxin (i.e., 0.006 μM). Furthermore, compared with podophyllotoxin (i.e., logP= 0.34), the water solubility of 4-TMP-DMEP (i.e., logP= 0.66) was significantly enhanced by 94%. For the first time, the novel compound 4-TMP-DMEP with superior antitumor activity was directionally synthesized from podophyllotoxin by the novel tandem biotransformation process developed in this work.


1971 ◽  
Vol 24 (3) ◽  
pp. 521 ◽  
Author(s):  
S Ahmed ◽  
M Alauddin ◽  
B Caddy ◽  
M Martin-Smith ◽  
WTL Sidwell ◽  
...  

The preparation of 3α,12α-bisdimethylamino-5β-cholane dimethiodide, 3α,12α-bisdimethylamino-5β-cholane dimethiodide, 3α,12α- bisdimethylamino-24-nor-5β-cholanedimethiodide, and 3α,12α- bisdimethylamino-24-nor-5β-cholanediethiodide, from deoxycholic acid are described. During this work it was found that attempted copper- quinoline decarboxylation of dehydrocholic acid gives rise to lactol formation, and that what had previously been considered to be 3α,12α- dihydroxy-5β-cholane is a mixture of this compound and 12α,24- dihydroxy-5β-cholane. Comparable selectivity of attack by methanesulphonyl chloride and toluene-p-sulphonyl chloride occurs with various polyhydric alcohols derived from bile acids, as evidenced from the products of reduction of the sulphonates with lithium aluminium hydride. With both 5α- and 5β-cholane derivatives, a C 3 equatorial hydroxyl group exhibits comparable reactivity to the terminal primary hydroxyl group, generated from the bile acid carboxylic group, towards both sulphonyl chlorides. With axial hydroxyl groups at C 7 and C 12, toluene-p-sulphonate formation is much more difficult than methane- sulphonate formation. Reduction by means of lithium aluminium hydride of equatorial sulphonate esters at C 7 and C 12 gives rise to a methylene group, but the axial sulphonates under the same conditions give the axial alcohol. The same clear distinction between equatorial and axial sulphonate esters is not observed at C 3 and C 6, but 17α- methanesulphonyloxy-5α-androstane gives 5α-androstane and the 17β- ester gives 17β-hydroxy-5α-androstane. Reduction of 12-oximino groups in both 5α- and 5β-cholanes with sodium and ethanol, hydrogen in the presence of a catalyst, or lithium aluminium hydride gives solely the 12α-amino compound.


Sign in / Sign up

Export Citation Format

Share Document