scholarly journals Calibrated comparison of SARS-CoV-2 neutralizing antibody levels in response to protein-, mRNA-, and vector-based COVID-19 vaccines

Author(s):  
Michael Karbiener ◽  
Maria R Farcet ◽  
Andreas Zollner ◽  
Taisei Masuda ◽  
Mitsuhiro Mori ◽  
...  

Abstract SARS-CoV-2 neutralizing antibodies have been suggested to reflect the efficacy of COVID-19 vaccines. This study reports the first direct comparison of the SARS-CoV-2 neutralizing antibody response elicited by a protein- (NVX-CoV2373), an mRNA- (Comirnaty), and a vector-based (Vaxzevria) COVID-19 vaccine, calibrated against the WHO international SARS-CoV-2 antibody standard, and further supports the use of neutralizing antibody levels as correlate of protection.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nanda Kishore Routhu ◽  
Narayanaiah Cheedarla ◽  
Venkata Satish Bollimpelli ◽  
Sailaja Gangadhara ◽  
Venkata Viswanadh Edara ◽  
...  

AbstractThere is a great need for the development of vaccines that induce potent and long-lasting protective immunity against SARS-CoV-2. Multimeric display of the antigen combined with potent adjuvant can enhance the potency and longevity of the antibody response. The receptor binding domain (RBD) of the spike protein is a primary target of neutralizing antibodies. Here, we developed a trimeric form of the RBD and show that it induces a potent neutralizing antibody response against live virus with diverse effector functions and provides protection against SARS-CoV-2 challenge in mice and rhesus macaques. The trimeric form induces higher neutralizing antibody titer compared to monomer with as low as 1μg antigen dose. In mice, adjuvanting the protein with a TLR7/8 agonist formulation alum-3M-052 induces 100-fold higher neutralizing antibody titer and superior protection from infection compared to alum. SARS-CoV-2 infection causes significant loss of innate cells and pathology in the lung, and vaccination protects from changes in innate cells and lung pathology. These results demonstrate RBD trimer protein as a suitable candidate for vaccine against SARS-CoV-2.


2017 ◽  
Vol 91 (13) ◽  
Author(s):  
Normand Blais ◽  
Martin Gagné ◽  
Yoshitomo Hamuro ◽  
Patrick Rheault ◽  
Martine Boyer ◽  
...  

ABSTRACT The human respiratory syncytial virus (hRSV) fusion (F) protein is considered a major target of the neutralizing antibody response to hRSV. This glycoprotein undergoes a major structural shift from the prefusion (pre-F) to the postfusion (post-F) state at the time of virus-host cell membrane fusion. Recent evidences suggest that the pre-F state is a superior target for neutralizing antibodies compared to the post-F state. Therefore, for vaccine purposes, we have designed and characterized a recombinant hRSV F protein, called Pre-F-GCN4t, stabilized in a pre-F conformation. To show that Pre-F-GCN4t does not switch to a post-F conformation, it was compared with a recombinant post-F molecule, called Post-F-XC. Pre-F-GCN4t was glycosylated and trimeric and displayed a conformational stability different from that of Post-F-XC, as shown by chemical denaturation. Electron microscopy analysis suggested that Pre-F-GCN4t adopts a lollipop-like structure. In contrast, Post-F-XC had a typical elongated conical shape. Hydrogen/deuterium exchange mass spectrometry demonstrated that the two molecules had common rigid folding core and dynamic regions and provided structural insight for their biophysical and biochemical properties and reactivity. Pre-F-GCN4t was shown to deplete hRSV-neutralizing antibodies from human serum more efficiently than Post-F-XC. Importantly, Pre-F-GCN4t was also shown to bind D25, a highly potent monoclonal antibody specific for the pre-F conformation. In conclusion, this construct presents several pre-F characteristics, does not switch to the post-F conformation, and presents antigenic features required for a protective neutralizing antibody response. Therefore, Pre-F-GCN4t can be considered a promising candidate vaccine antigen. IMPORTANCE Human respiratory syncytial virus (RSV) is a global leading cause of infant mortality and adult morbidity. The development of a safe and efficacious RSV vaccine remains an important goal. The RSV class I fusion (F) glycoprotein is considered one of the most promising vaccine candidates, and recent evidences suggest that the prefusion (pre-F) state is a superior target for neutralizing antibodies. Our study presents the physicochemical characterization of Pre-F-GCN4t, a molecule designed to be stabilized in the pre-F conformation. To confirm its pre-F conformation, Pre-F-GCN4t was analyzed in parallel with Post-F-XC, a molecule in the post-F conformation. Our results show that Pre-F-GCN4t presents characteristics of a stabilized pre-F conformation and support its use as an RSV vaccine antigen. Such an antigen may represent a significant advance in the development of an RSV vaccine.


2022 ◽  
Author(s):  
Apoorva Munigela ◽  
Sasikala M ◽  
Gujjarlapudi Deepika ◽  
Anand V Kulkarni ◽  
Krishna Vemula ◽  
...  

Abstract Coronavirus disease (COVID-19) continues to be a major health concern leading to substantial mortality and morbidity across the world. Vaccination is effective in reducing the severity and associated mortality. Data pertaining to the duration of immunity, antibody waning and the optimal timing of booster dose administration is limited. In this cross-sectional study, we assessed the antibody levels in healthcare workers who were fully vaccinated after obtaining Institutional ethics committee approval and informed consent. Whole blood was collected and enumeration of S1/S2 neutralizing antibody levels was carried out using LIAISON SARS-COV-2 S1/S2 IgG assay. A total of 1636 individuals who were vaccinated with Covaxin or Covishield were included. Of these, 52% were males with a median age of 29 years. Diabetes and Hypertension was noted in 2.32% (38/1636) and 2.87% (47/1636) of the individuals. Spike neutralizing antibodies were below the detectable range (<15 AU/ml) in 6.0% (98/1636) of the individuals. Decline in neutralizing antibody was seen in 30% of the individuals above 40 years of age with comorbidities (diabetes and hypertension) after 6 months. These individuals may be prioritized for a booster dose at 6 months.


2021 ◽  
Author(s):  
Ernst J. Schaefer ◽  
Florence Comite ◽  
Latha Dulipsingh ◽  
Maxine Lang ◽  
Jessica Jimison ◽  
...  

AbstractMost deaths from severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection occur in older subjects. We assessed age effects and clinical utility of serum SARS-CoV-2 immunoglobulin G (IgG), immunoglobulin M (IgM), and neutralizing antibodies and serum inflammatory markers. Serum IgG, IgM, and neutralizing antibody levels were measured using chemiluminescence assays from Diazyme (Poway, CA), while serum interleukin-6 (IL-6), C reactive protein (CRP), and ferritin were measured with immunoassays obtained from Roche (Indianapolis, IN). In 79,005 subjects, IgG and IgM levels were positive (≥1.0 arbitrary units [AU]/mL) in 5.29% and 3.25% of subjects, respectively. In antibody positive subjects, median IgG levels were 3.93 AU/mL if <45 years of age, 10.18 AU/mL if 45-64 years of age, and 10.85 AU/mL if ≥65 years of age (p<0.0001). In SARS-CoV-2 RNA positive cases, family members and exposed subjects (n=1,111), antibody testing was found to be valuable for case finding, and persistent IgM levels were associated with chronic symptoms. In non-hospitalized and hospitalized subjects assessed for SARS-CoV-2 RNA (n=278), median IgG levels in AU/mL were 0.05 in negative subjects (n=100), 14.83 in positive outpatients (n=129), and 30.61 in positive hospitalized patients (n=49, p<0.0001). Neutralizing antibody levels correlated significantly with IgG (r=0.875; p<0.0001). Two or more of the criteria of IL-6 ≥10 pg/mL, CRP ≥10 mg/L, and/or IgM >1.0 AU/mL occurred in 97.7% of inpatients versus 1.8% of outpatients (>50-fold relative risk, C statistic 0.986, p<0.0001). Our data indicate that: 1) IgG levels are significantly higher in positive older subjects, possibly to compensate for decreased cellular immunity with aging; 2) IgG levels are important for case finding in family clusters; 3) IgG levels are significantly correlated with neutralizing antibody levels; 4) persistently elevated IgM levels are associated with chronic disease; and 5) markedly elevated IL-6, hs-CRP, and/or positive IgM accurately identify SARS-CoV-2 RNA positive subjects requiring hospitalization.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tybbysay P. Salinas ◽  
Jose L. Garrido ◽  
Jacqueline R. Salazar ◽  
Publio Gonzalez ◽  
Nicole Zambrano ◽  
...  

BackgroundNew World Hantaviruses (NWHs) are the etiological agent underlying hantavirus cardiopulmonary syndrome (HCPS), a severe respiratory disease with high mortality rates in humans. In Panama, infections with Choclo Orthohantavirus (CHOV) cause a much milder illness characterized by higher seroprevalence and lower mortality rates. To date, the cytokine profiles and antibody responses associated with this milder form of HCPS have not been defined. Therefore, in this study, we examined immune serological profiles associated with CHOV infections.MethodsFor this retrospective study, sera from fifteen individuals with acute CHOV-induced HCPS, were analyzed alongside sera from fifteen convalescent phase individuals and thirty-three asymptomatic, CHOV-seropositive individuals. Cytokine profiles were analyzed by multiplex immunoassay. Antibody subclasses, binding, and neutralization against CHOV-glycoprotein (CHOV-GP) were evaluated by ELISA, and flow cytometry.ResultsHigh titers of IFNγ, IL-4, IL-8, and IL-10 serum cytokines were found in the acute individuals. Elevated IL-4 serum levels were found in convalescent and asymptomatic seropositive individuals. High titers of IgG1 subclass were observed across the three cohorts analyzed. Neutralizing antibody response against CHOV-GP was detectable in few acute individuals but was strong in both convalescent and asymptomatic seropositive individuals.ConclusionA Th1/Th2 cytokine signature is characteristic during acute mild HCPS caused by CHOV infection. High expression of Th2 and IL-8 cytokines are correlated with clinical parameters in acute mild HCPS. In addition, a strong IL-4 signature is associated with different cohorts, including asymptomatic individuals. Furthermore, asymptomatic individuals presented high titers of neutralizing antibodies.


2018 ◽  
Vol 115 (24) ◽  
pp. 6273-6278 ◽  
Author(s):  
Ilona Baraniak ◽  
Barbara Kropff ◽  
Lyn Ambrose ◽  
Megan McIntosh ◽  
Gary R. McLean ◽  
...  

Human cytomegalovirus (HCMV) is an important pathogen in transplant patients and in congenital infection. Previously, we demonstrated that vaccination with a recombinant viral glycoprotein B (gB)/MF59 adjuvant formulation before solid organ transplant reduced viral load parameters post transplant. Reduced posttransplant viremia was directly correlated with antibody titers against gB consistent with a humoral response against gB being important. Here we show that sera from the vaccinated seronegative patients displayed little evidence of a neutralizing antibody response against cell-free HCMV in vitro. Additionally, sera from seronegative vaccine recipients had minimal effect on the replication of a strain of HCMV engineered to be cell-associated in a viral spread assay. Furthermore, although natural infection can induce antibody-dependent cellular cytotoxicity (ADCC) responses, serological analysis of seronegative vaccinees again presented no evidence of a substantial ADCC-promoting antibody response being generated de novo. Finally, analyses for responses against major antigenic domains of gB following vaccination were variable, and their pattern was distinct compared with natural infection. Taken together, these data argue that the protective effect elicited by the gB vaccine is via a mechanism of action in seronegative vaccinees that cannot be explained by neutralization or the induction of ADCC. More generally, these data, which are derived from a human challenge model that demonstrated that the gB vaccine is protective, highlight the need for more sophisticated analyses of new HCMV vaccines over and above the quantification of an ability to induce potent neutralizing antibody responses in vitro.


2020 ◽  
Vol 223 (1) ◽  
pp. 47-55 ◽  
Author(s):  
William T Lee ◽  
Roxanne C Girardin ◽  
Alan P Dupuis ◽  
Karen E Kulas ◽  
Anne F Payne ◽  
...  

Abstract Passive transfer of antibodies from COVID-19 convalescent patients is being used as an experimental treatment for eligible patients with SARS-CoV-2 infections. The United States Food and Drug Administration’s (FDA) guidelines for convalescent plasma initially recommended target antibody titers of 160. We evaluated SARS-CoV-2 neutralizing antibodies in sera from recovered COVID-19 patients using plaque reduction neutralization tests (PRNT) at moderate (PRNT50) and high (PRNT90) stringency thresholds. We found that neutralizing activity significantly increased with time post symptom onset (PSO), reaching a peak at 31–35 days PSO. At this point, the number of sera having neutralizing titers of at least 160 was approximately 93% (PRNT50) and approximately 54% (PRNT90). Sera with high SARS-CoV-2 antibody levels (&gt;960 enzyme-linked immunosorbent assay titers) showed maximal activity, but not all high-titer sera contained neutralizing antibody at FDA recommended levels, particularly at high stringency. These results underscore the value of serum characterization for neutralization activity.


2001 ◽  
Vol 75 (18) ◽  
pp. 8469-8477 ◽  
Author(s):  
J. W. Hooper ◽  
D. M. Custer ◽  
E. Thompson ◽  
C. S. Schmaljohn

ABSTRACT Four hantaviruses—Hantaan virus (HTNV), Seoul virus (SEOV), Dobrava virus (DOBV) and Puumala virus—are known to cause hemorrhagic fever with renal syndrome (HFRS) in Europe and Asia. HTNV causes the most severe form of HFRS (5 to 15% case-fatality rate) and afflicts tens of thousands of people annually. Previously, we demonstrated that DNA vaccination with a plasmid expressing the SEOV M gene elicited neutralizing antibodies and protected hamsters against infection with SEOV and HTNV. Here, we report the construction and evaluation of a DNA vaccine that expresses the HTNV M gene products, G1 and G2. DNA vaccination of hamsters with the HTNV M gene conferred sterile protection against infection with HTNV, SEOV, and DOBV. DNA vaccination of rhesus monkeys with either the SEOV or HTNV M gene elicited high levels of neutralizing antibodies. These are the first immunogenicity data for hantavirus DNA vaccines in nonhuman primates. Because a neutralizing antibody response is considered a surrogate marker for protective immunity in humans, our protection data in hamsters combined with the immunogenicity data in monkeys suggest that hantavirus M gene-based DNA vaccines could protect humans against the most severe forms of HFRS.


2009 ◽  
Vol 84 (5) ◽  
pp. 2573-2584 ◽  
Author(s):  
Catherine A. Blish ◽  
D. Noah Sather ◽  
George Sellhorn ◽  
Leonidas Stamatatos ◽  
Yide Sun ◽  
...  

ABSTRACT Development of broadly cross-reactive neutralizing antibodies (NAbs) remains a major goal of HIV-1 vaccine development, but most candidate envelope immunogens have had limited ability to cross-neutralize heterologous strains. To evaluate the immunogenicity of subtype A variants of HIV-1, rabbits were immunized with pairs of closely related subtype A envelopes from the same individual. In each immunogen pair, one variant was readily neutralized by a variety of monoclonal antibodies and plasma antibodies, while the other was neutralization resistant, suggesting differences in the exposures of key epitopes. The breadth of the antibody response was evaluated against subtype A, B, C, and D variants of HIV-1. The specificity of the immunogen-derived neutralizing antibody response was also compared to that of the infected individuals from whom these variants were cloned. None of the immunogens produced broad neutralizing antibodies in immunized animals, and most of the neutralizing antibodies were directed to the variable loops, particularly the V3 loop. No detectable antibodies to either of the potentially exposed conserved epitopes, the membrane proximal external region, or the CD4 binding site were found with immunized rabbits. In contrast, relatively little of the neutralizing activity within the plasma samples of the infected individuals was directed to linear epitopes within the variable loops. These data indicate that immunogens designed to expose conserved regions did not enhance generation of broadly neutralizing antibodies in comparison with the immunogens that failed to expose those regions using this immunization approach.


2021 ◽  
Author(s):  
Sabrina E Racine-Brzostek ◽  
Jim Yee ◽  
Ashley Sukhu ◽  
Yuqing Qiu ◽  
Sophie Rand ◽  
...  

Longitudinal studies are needed to evaluate the SARS-CoV-2 mRNA vaccine antibody response under real-world conditions. This longitudinal study investigated the quantity and quality of SARS-CoV-2 antibody response in 846 specimens from 350 subjects: comparing BNT162b2-vaccinated individuals (19 previously diagnosed with COVID-19 [RecoVax]; 49 never been diagnosed [NaiveVax]) to 122 hospitalized unvaccinated (HospNoVax) and 160 outpatient unvaccinated (OutPtNoVax) COVID-19 patients. NaiveVax experienced a delay in generating SARS-CoV-2 total antibody levels (TAb) and neutralizing antibodies (SNAb) after the 1st vaccine dose (D1), but a rapid increase in antibody levels was observed after the 2nd dose (D2). However, these never reached the robust levels observed in RecoVax. In fact, NaiveVax TAb and SNAb levels decreased 4-weeks post-D2 (p=0.003;p<0.001). For the most part, RecoVax TAb persisted throughout this study, after reaching maximal levels 2-weeks post-D2; but SNAb decreased significantly ~6-months post-D1 (p=0.002). Although NaiveVax avidity lagged behind that of RecoVax for most of the follow-up periods, NaiveVax did reach similar avidity by ~6-months post-D1. These data suggest that one vaccine dose elicits maximal antibody response in RecoVax and may be sufficient. Also, despite decreasing levels in TAb and SNAb overtime, long-term avidity maybe a measure worth evaluating and possibly correlating to vaccine efficacy.


Sign in / Sign up

Export Citation Format

Share Document