scholarly journals LAMTOR1 Phosphorylation of Exo70 Facilitates Tumor-Associated Macrophage Polarization to Restrain CD8+ T Cell Function in HCC

Author(s):  
Bo Wu ◽  
Qian Wang ◽  
Bowen Li ◽  
Xiaonan Wang ◽  
Xiaoni Zhan ◽  
...  

Abstract The tumor microenvironment controls the progression of tissue homeostasis leading to cancer.Accumulation of anti-inflammatory tumor-associated macrophages (TAM) has also been linked to worsening clinical outcomes as well as resistance to treatment in hepatocellular carcinoma(HCC).The current immune landscape for regulation by the presence of TAMs has been studies.It is known that LAMTOR1 undergoes phosphorylation to bind to Exo70 and other exocyst components and is enhancing the secretion of TGFB1 to facilitate the polarization of TAMs.The tumor-conditioned macrophages(TCM) numbers also correlated with enhanced number of regulatory T cells(Tregs) and decreased CD8+T cells in HCC.Mechanistically,TCM enhanced IL-10 production to diminished CD8+T cell activities.Our data demonstrate a novel immune therapeutic approach targeting TAMs immune suppression of T cell anti-tumor activities.

Nanoscale ◽  
2021 ◽  
Author(s):  
Simeng Liu ◽  
Huimin Liu ◽  
Xiaoshuang Song ◽  
Ailing Jiang ◽  
Yuchuan Deng ◽  
...  

Efficient tumor-targeting delivery of CpG or BMS-202 by adoptive T-cells coupled with drug loaded liposomes reversed the immunosuppressive tumor microenvironment, restoring T cell viability and effectively inhibiting the growth of melanoma.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qian Gao ◽  
Hui-Ting Liu ◽  
Yu-Qin Xu ◽  
Lin Zhang ◽  
Yuan-Ru Liu ◽  
...  

Abstract Background Hypopharyngeal cancer (HPC) is associated with a poor prognosis and a high recurrence rate. Immune escape is one of the reasons for the poor prognosis of malignant tumors. Programmed cell death ligand 1 (PD-L1) and programmed cell death-1 (PD-1) have been shown to play important roles in immune escape. However, the role of PD-1/PD-L1 in HPC remains unclear. In this experiment, we investigated the effect of exosomes from HPC patient serum on CD8+ T cell function and PD-1/PD-L1 expression and, thus, on prognosis. We hope to provide guidance for the identification of new targets for HPC immunotherapy. Methods PD-1 and CD8 expression in 71 HPC tissues and 16 paracarcinoma tissues was detected by immunohistochemistry. Concurrently, the clinicopathological data of the patients were obtained to conduct correlation analysis. Exosomes were isolated from serum and then identified by Western blotting (WB), transmission electron microscopy (TEM), and nanoparticle tracking analysis (NTA). Flow cytometry was used to assess the activity of CD8+ T cells after exosome stimulation. The effects of exosomes on the ability of CD8+ T cells to kill FaDu cells were assessed by CCK-8 assay. The expression of IL-10 and TGF-β1 was measured by enzyme-linked immunosorbent assay (ELISA). PD-L1 expression in HPC tissue samples was evaluated by immunohistochemistry, and the relationship between PD-1/PD-L1 expression and prognosis was investigated with patient specimens. Results PD-1 expression was significantly upregulated on CD8+ T cells in tumor tissues compared with those in normal tissues. The overall survival (OS) and disease-free survival (DFS) of PD-1-overexpressing patients were decreased. Serum exosomes from patients can elevate PD-1 expression on CD8+ T cells and suppress their killing capacity and secretory function. The rate of positive PD-L1 expression was increased in HPC tissues compared with paracancerous tissues. The DFS and OS of the PD-1(+)-PD-L1(+) group were significantly lower than those of the PD-1(−)-PD-L1(−) group. Conclusion Our findings indicate that serum exosomes from HPC patients can inhibit CD8+ T cell function and that the PD-1-PD-L1 pathway plays an important role in the immune escape of HPC. Exosomes combined with immunotherapy may guide the treatment of patients with advanced disease in the future.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A759-A759
Author(s):  
Arthur Liu ◽  
Michael Curran

BackgroundThe majority of patients with pancreatic ductal adenocarcinoma (PDAC) fail to derive any durable responses from single agent immune checkpoint blockade therapy. This refractory state originates from PDAC's unique tumor microenvironment that is densely populated by immunosuppressive myeloid cells while excluding most antitumor CD8 T cells.1 In addition, PDAC is highly hypoxic and exhibits poor vascularity, both qualities which further limit antitumor immunity.2 3 We showed that the hypoxia-activated prodrug TH-302 (Evofosfamide) potentiates immunotherapy responses.4 Mechanistically, TH-302 decreases intratumoral hypoxia and initiates normalization of the tumor vasculature. While TH-302 facilitates a cellular remodeling process that diminishes tumor hypoxia, the nature of the vascular remodeling involved remains unknown, as do the downstream consequences for the composition of the tumor microenvironment and responsiveness to immunotherapy. We hypothesized that anti-angiogenic therapy and Evofosfamide might cooperate to normalize tumor vasculature and diminish hypoxia.MethodsTH-302 and a vascular endothelial growth factor receptor-2 (VEGFR-2) blocking antibody were used to treat several syngeneic murine models, including orthotopic pancreatic cancer and a transplantable model of prostate cancer. Immunofluorescence and flow cytometry were used to assess intratumoral hypoxia, vessel normalization, and tumor immune infiltrate.ResultsWe find that anti-VEGFR-2 (DC101) in combination with TH-302 demonstrates a cooperative benefit to combat both orthotopically implanted pancreatic cancer and transplantable prostate cancer. Combination therapy reduces intratumoral hypoxia, leads to pruning of the tumor vasculature, and increases the infiltration of endothelial cells into hypoxic regions. Across models, the combination of DC101 and TH-302 significantly enhance CD8 T cell function and limits their exhausted state. At the same time, tumor associated macrophages exhibit decreased expression of M2-like features. Similar to other anti-angiogenic therapies, combination DC101 and TH-302 leads to an increased frequency of PD-L1 expressing cells. Concurrent anti-PD-1 failed to provide any additional therapeutic benefit, which in part may be due poor CD8 T cell infiltration. Instead, we find that CD40 agonist therapy is improved when combined with TH-302 and DC101.ConclusionsTH-302 and DC101 utilize unique yet complementary mechanisms to improve the survival of mice challenged with pancreatic or prostate tumors. This combination relieves hypoxia and simultaneously reinvigorates T cell function and reduces macrophage mediated immunosuppression. In this setting, CD40 agonist therapy provides an additive benefit in prolonging mouse survival. Put together, these data indicate that targeted hypoxia reduction with anti-angiogenic therapy remodels the tumor microenvironment and enhances immunotherapy responses in PDAC.ReferencesBear AS, Vonderheide RH, O'Hara MH. Challenges and opportunities for pancreatic cancer immunotherapy. Cancer Cell. 2020;38(6):788–802. doi: 10.1016/j.ccell.2020.08.004. Epub 2020 Sep 17. PMID: 32946773; PMCID: PMC7738380.Koong AC, Mehta VK, Le QT, Fisher GA, Terris DJ, Brown JM, Bastidas AJ, Vierra M. Pancreatic tumors show high levels of hypoxia. Int J Radiat Oncol Biol Phys 2000;48(4):919–22. doi: 10.1016/s0360-3016(00)00803-8. PMID: 11072146.Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D, Madhu B, Goldgraben MA, Caldwell ME, Allard D, Frese KK, Denicola G, Feig C, Combs C, Winter SP, Ireland-Zecchini H, Reichelt S, Howat WJ, Chang A, Dhara M, Wang L, Rückert F, Grützmann R, Pilarsky C, Izeradjene K, Hingorani SR, Huang P, Davies SE, Plunkett W, Egorin M, Hruban RH, Whitebread N, McGovern K, Adams J, Iacobuzio-Donahue C, Griffiths J, Tuveson DA. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 2009;324(5933):1457–61. doi: 10.1126/science.1171362. Epub 2009 May 21. PMID: 19460966; PMCID: PMC2998180.Jayaprakash P, Ai M, Liu A, Budhani P, Bartkowiak T, Sheng J, Ager C, Nicholas C, Jaiswal AR, Sun Y, Shah K, Balasubramanyam S, Li N, Wang G, Ning J, Zal A, Zal T, Curran MA. Targeted hypoxia reduction restores T cell infiltration and sensitizes prostate cancer to immunotherapy. J Clin Invest 2018;128(11):5137–5149. doi: 10.1172/JCI96268. Epub 2018 Oct 15. PMID: 30188869; PMCID: PMC6205399.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e14565-e14565
Author(s):  
Amit Adhikari ◽  
Juliete Macauley ◽  
Yoshimi Johnson ◽  
Mike Connolly ◽  
Tim Coleman ◽  
...  

e14565 Background: Glioblastoma (GBM) is an aggressive form of brain cancer with a median survival of 15 months which has remained unchanged despite technological advances in the standard of care. GBM cells specifically express human cytomegalovirus (HCMV) proteins providing a unique opportunity for targeted therapy. Methods: We utilized our UNITE (UNiversal Intracellular Targeted Expression) platform to develop a multi-antigen DNA vaccine (ITI-1001) that codes for the HCMV proteins- pp65, gB and IE-1. The UNITE platform involves lysosomal targeting technology, fusing lysosome-associated protein 1 (LAMP1) with target antigens resulting in increased antigen presentation by MHC-I and II. ELISpot, flow cytometry and ELISA techniques were used to evaluate the vaccine immunogenicity and a syngeneic, orthotopic GBM mouse model that expresses HCMV proteins was used for efficacy studies. The tumor microenvironment studies were done using flow cytometry and MSD assay. Results: ITI-1001 vaccination showed a robust antigen-specific CD4 and CD8 T cell response in addition to a strong humoral response. Using GBM mouse model, therapeutic treatment of ITI-1001 vaccine resulted in ̃56% survival with subsequent long-term immunity. Investigating the tumor microenvironment showed significant CD4 T cell infiltration as well as enhanced Th1 and CD8 T cell activation. Regulatory T cells were also upregulated upon ITI-1001 vaccination and would be an attractive target to further improve this therapy. In addition, tumor burden negatively correlated with number of activated CD4 T cells (CD4 IFNγ+) reiterating the importance of CD4 activation in ITI-1001 efficacy and potentially identifying treatment responders and non-responders. Further characterization of these two groups showed high infiltration of CD3+, CD4+ and CD8+ T cells in responders compared with non- responders along with higher CD8 T cell activation. Conclusions: Thus, we show that vaccination with HCMV antigens using the ITI-1001-UNITE platform generates strong cellular and humoral immune responses, triggering significant anti-tumor activity that leads to enhanced survival in mice with GBM.


Metabolites ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 461
Author(s):  
Jenifer Sanchez ◽  
Ian Jackson ◽  
Katie R. Flaherty ◽  
Tamara Muliaditan ◽  
Anna Schurich

Upon activation T cells engage glucose metabolism to fuel the costly effector functions needed for a robust immune response. Consequently, the availability of glucose can impact on T cell function. The glucose concentrations used in conventional culture media and common metabolic assays are often artificially high, representing hyperglycaemic levels rarely present in vivo. We show here that reducing glucose concentration to physiological levels in culture differentially impacted on virus-specific compared to generically activated human CD8 T cell responses. In virus-specific T cells, limiting glucose availability significantly reduced the frequency of effector-cytokine producing T cells, but promoted the upregulation of CD69 and CD103 associated with an increased capacity for tissue retention. In contrast the functionality of generically activated T cells was largely unaffected and these showed reduced differentiation towards a residency phenotype. Furthermore, T cells being cultured at physiological glucose concentrations were more susceptible to viral infection. This setting resulted in significantly improved lentiviral transduction rates of primary cells. Our data suggest that CD8 T cells are exquisitely adapted to their niche and provide a reminder of the need to better mimic physiological conditions to study the complex nature of the human CD8 T cell immune response.


2020 ◽  
Vol 117 (23) ◽  
pp. 12961-12968 ◽  
Author(s):  
M. Zeeshan Chaudhry ◽  
Rosaely Casalegno-Garduno ◽  
Katarzyna M. Sitnik ◽  
Bahram Kasmapour ◽  
Ann-Kathrin Pulm ◽  
...  

Viral immune evasion is currently understood to focus on deflecting CD8 T cell recognition of infected cells by disrupting antigen presentation pathways. We evaluated viral interference with the ultimate step in cytotoxic T cell function, the death of infected cells. The viral inhibitor of caspase-8 activation (vICA) conserved in human cytomegalovirus (HCMV) and murine CMV (MCMV) prevents the activation of caspase-8 and proapoptotic signaling. We demonstrate the key role of vICA from either virus, in deflecting antigen-specific CD8 T cell-killing of infected cells. vICA-deficient mutants, lacking either UL36 or M36, exhibit greater susceptibility to CD8 T cell control than mutants lacking the set of immunoevasins known to disrupt antigen presentation via MHC class I. This difference is evident during infection in the natural mouse host infected with MCMV, in settings where virus-specific CD8 T cells are adoptively transferred. Finally, we identify the molecular mechanism through which vICA acts, demonstrating the central contribution of caspase-8 signaling at a point of convergence of death receptor-induced apoptosis and perforin/granzyme-dependent cytotoxicity.


2007 ◽  
Vol 81 (6) ◽  
pp. 2940-2949 ◽  
Author(s):  
Adam J. Gehring ◽  
Dianxing Sun ◽  
Patrick T. F. Kennedy ◽  
Esther Nolte-'t Hoen ◽  
Seng Gee Lim ◽  
...  

ABSTRACT CD8 T cells exert their antiviral function through cytokines and lysis of infected cells. Because hepatocytes are susceptible to noncytolytic mechanisms of viral clearance, CD8 T-cell antiviral efficiency against hepatotropic viruses has been linked to their capacity to produce gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α). On the other hand, intrahepatic cytokine production triggers the recruitment of mononuclear cells, which sustain acute and chronic liver damage. Using virus-specific CD8 T cells and human hepatocytes, we analyzed the modulation of virus-specific CD8 T-cell function after recognition peptide-pulsed or virally infected hepatocytes. We observed that hepatocyte antigen presentation was generally inefficient, and the quantity of viral antigen strongly influenced CD8 T-cell antiviral function. High levels of hepatitis B virus production induced robust IFN-γ and TNF-α production in virus-specific CD8 T cells, while limiting amounts of viral antigen, both in hepatocyte-like cells and naturally infected human hepatocytes, preferentially stimulated CD8 T-cell degranulation. Our data document a mechanism where virus-specific CD8 T-cell function is influenced by the quantity of virus produced within hepatocytes.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 840-840
Author(s):  
David M Woods ◽  
Karrune V. Woan ◽  
Eva Sahakian ◽  
John Powers ◽  
Fengdong Cheng ◽  
...  

Abstract Abstract 840 T-cells are an essential component of immune mediated tumor rejection. Adoptive transfer of T-cells results in a durable anti-tumor response in some patients with hematological malignancies. To further improve the efficacy of T-cell adoptive transfers, a better understanding of the regulatory checkpoints of these cells is needed. Here we show that HDAC11 is a negative regulator of CD8+ T-cell function, thus representing a potential target in adoptive immunotherapy. HDACs are a group of enzymes initially known for their role in deacetylating histones, thereby condensing chromatin structure and repressing gene expression. The known roles of HDACs as epigenetic regulators have recently expanded to include more complex regulatory functions including interactions with non-histone targets. HDAC11 is the most recently identified member of the HDAC family, and is highly expressed in brain, testis and T-cells. Recently, our group reported HDAC11 as a regulator of IL-10 production in antigen presenting cells. To determine the role of HDAC11 in T-cell biology, T-cells from HDAC11 knock out (HDAC11KO) mice were compared to wild-type T-cells in number, function and phenotype. HDAC11KO T-cells had no differences in absolute number or percentages of CD4+ or CD8+ lymphocytes. However CD8+ T-cells were hyper-proliferative upon CD3/CD28 stimulation and produced significantly higher levels of the pro-inflammatory, Tc1 cytokines IL-2, INF-γ, and TNF-α. However, no significant increases in the production of the Tc2 cytokines IL-4, IL-6 or IL-10 were seen. Further investigation of phenotypic differences also revealed that HDAC11KO mice have a larger percentage of central memory CD8+ T-cells. Additionally, HDAC11KO CD8+ T-cells express higher levels of the transcription factor Eomes, a known contributor to central memory cell formation as well as a controller of granzyme B and perforin production in CD8+ T-cells. This Tc1 and central memory-like phenotype translated to delayed tumor progression and survival in vivo in C1498 AML bearing mice treated with adoptively transferred HDAC11KO T-cells, as compared with wild type T-cells. Collectively, we have demonstrated HDAC11 as a negative regulator of CD8+ T-cell function, and a novel potential target to augment the efficacy of adoptive T-cell tumor immunotherapy. Disclosures: No relevant conflicts of interest to declare.


2001 ◽  
Vol 193 (2) ◽  
pp. 233-238 ◽  
Author(s):  
Madhav V. Dhodapkar ◽  
Ralph M. Steinman ◽  
Joseph Krasovsky ◽  
Christian Munz ◽  
Nina Bhardwaj

Immunostimulatory properties of dendritic cells (DCs) are linked to their maturation state. Injection of mature DCs rapidly enhances antigen-specific CD4+ and CD8+ T cell immunity in humans. Here we describe the immune response to a single injection of immature DCs pulsed with influenza matrix peptide (MP) and keyhole limpet hemocyanin (KLH) in two healthy subjects. In contrast to prior findings using mature DCs, injection of immature DCs in both subjects led to the specific inhibition of MP-specific CD8+ T cell effector function in freshly isolated T cells and the appearance of MP-specific interleukin 10–producing cells. When pre- and postimmunization T cells were boosted in culture, there were greater numbers of MP-specific major histocompatibility complex tetramer-binding cells after immunization, but these had reduced interferon γ production and lacked killer activity. These data demonstrate the feasibility of antigen-specific inhibition of effector T cell function in vivo in humans and urge caution with the use of immature DCs when trying to enhance tumor or microbial immunity.


2019 ◽  
Author(s):  
James Stokes ◽  
Eric Berry ◽  
Rajesh Singh ◽  
Upender Manne ◽  
Manoj K. Mishra

Sign in / Sign up

Export Citation Format

Share Document