scholarly journals Angio-Associated Migratory Cell Protein (AAMP) Regulates the Hippo/YAP Pathway and Mitochondrial Functionality to Drive Osteosarcoma Metastasis

Author(s):  
Fangbiao Zhan ◽  
Zhiyu Chen ◽  
Chaozheng Xie ◽  
Shuang Xiang ◽  
Qianrong Deng ◽  
...  

Abstract Background: Osteosarcoma (OS) is the prevalent form of primary bone cancer among adolescents, but the 5-year overall survival rate for patients with a metastatic or recurrent OS is under 20%. Angio-associated migratory cell protein (AAMP) is known to be a key regulator of cellular migration, yet its role in the context of OS metastasis has yet to be firmly established.Methods: Bioinformatics analyses were used to explore the association between AAMP and YAP expression and the prognosis of OS patients, and to evaluate differences in AAMP expression in patients with primary OS, recurrent OS, and pulmonary metastatic OS. Immunohistochemical (IHC) staining was additionally performed to compare AAMP levels in primary OS and pulmonary metastatic OS patient samples. Lentiviral transduction was further used to establish OS cell lines in which AAMP or YAP had been stably knocked down or overexpressed. OS cell migration and invasion were assessed using wound healing and Transwell assays. Proteins associated with the mitochondria, the epithelial-mesenchymal transition (EMT), YAP, and its target proteins were assessed in OS cell lines via Western blotting. OS cell lamellipodia were detected via phalloidin staining. Mitochondrial morphological characteristics were assessed via transmission electron microscopy following the knockdown of AAMP. An ATP kit was employed to measure ATP levels in OS cells in which AAMP had been knocked down. Animal model studies were used to confirm indices associated with OS cell lung metastasis following AAMP knockdown. Results: Patients with metastatic OS exhibit higher levels of AAMP expression that are correlated with poorer patient prognosis. Knocking down AAMP suppressed the migratory, invasive, and EMT activity of analyzed OS cell lines. AAMP was found to regulate CFL1 and thereby control OS cell protrusion. AAMP knockdown was further found to promote OS cell mitochondrial dysfunction and decreased intracellular ATP production, with these AAMP knockdown cells exhibiting impaired migratory and invasive activity as a consequence of YAP inhibition. Consistently, the knockdown of AAMP suppressed the in vivo metastasis of OS cells. Conclusions: Together, these data highlight a model wherein AAMP can promote OS cell migratory and invasive activity by regulating YAP and mitochondrial functionality. The AAMP/CFL1/YAP signaling pathway may thus represent a viable therapeutic target for efforts aimed at suppressing the metastatic progression of OS.

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Liang-Chun Yin ◽  
Gang Xiao ◽  
Rui Zhou ◽  
Xiao-Ping Huang ◽  
Ning-Lei Li ◽  
...  

MicroRNA-361-5p (miR-361-5p) is a tumor suppressor miRNA that is dysregulated in several types of human cancer. However, the functional significance of miR-361-5p in hepatocellular carcinoma (HCC) is unclear. This study explored the biological function of miR-361-5p in regulating the progression of HCC and the underlying molecular mechanism. RT-qPCR analysis showed that miR-361-5p was downregulated in HCC tissues and cell lines. Functional analysis revealed that miR-361-5p acted as a tumor suppressor, inhibiting cell proliferation, migration, and invasion in HCC cell lines. Bioinformatics analyses identified Twist1 as a direct target of miR-361-5p, which was validated by dual-luciferase reporter assays, RT-qPCR, and western blotting. Rescue experiments indicated that Twist1 may mediate the tumor-suppressive effect of miR-361-5p in HCC cells, and this was supported by the effect of miR-361-5p on inhibiting the epithelial-mesenchymal transition (EMT) by targeting Twist1. This study is the first to suggest that miR-361-5p inhibits tumorigenesis and EMT in HCC by targeting Twist1. These findings are valuable for the diagnosis and clinical management of HCC.


2019 ◽  
Vol 8 (5) ◽  
pp. 703 ◽  
Author(s):  
Barnali Deb ◽  
Vinuth N. Puttamallesh ◽  
Kirti Gondkar ◽  
Jean P. Thiery ◽  
Harsha Gowda ◽  
...  

Bladder carcinoma is highly heterogeneous and its complex molecular landscape; thus, poses a significant challenge for resolving an effective treatment in metastatic tumors. We computed the epithelial-mesenchymal transition (EMT) scores of three bladder carcinoma subtypes—luminal, basal, and non-type. The EMT score of the non-type indicated a “mesenchymal-like” phenotype, which correlates with a relatively more aggressive form of carcinoma, typified by an increased migration and invasion. To identify the altered signaling pathways potentially regulating this EMT phenotype in bladder cancer cell lines, we utilized liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based phosphoproteomic approach. Bioinformatics analyses were carried out to determine the activated pathways, networks, and functions in bladder carcinoma cell lines. A total of 3125 proteins were identified, with 289 signature proteins noted to be differentially phosphorylated (p ≤ 0.05) in the non-type cell lines. The integrin pathway was significantly enriched and five major proteins (TLN1, CTTN, CRKL, ZYX and BCAR3) regulating cell motility and invasion were hyperphosphorylated. Our study reveals GSK3A/B and CDK1 as promising druggable targets for the non-type molecular subtype, which could improve the treatment outcomes for aggressive bladder carcinoma.


2019 ◽  
Vol 12 (2) ◽  
pp. 105-114 ◽  
Author(s):  
Lisha Xie ◽  
Tao Jiang ◽  
Ailan Cheng ◽  
Ting Zhang ◽  
Pin Huang ◽  
...  

Background: Alterations in microRNAs (miRNAs) are related to the occurrence of nasopharyngeal carcinoma (NPC) and play an important role in the molecular mechanism of NPC. Our previous studies show low expression of 14-3-3σ (SFN) is related to the metastasis and differentiation of NPC, but the underlying molecular mechanisms remain unclear. Methods: Through bioinformatics analysis, we find miR-597 is the preferred target miRNA of 14-3-3σ. The expression level of 14-3-3σ in NPC cell lines was detected by Western blotting. The expression of miR-597 in NPC cell lines was detected by qRT-PCR. We transfected miR-597 mimic, miR-597 inhibitor and 14-3-3σ siRNA into 6-10B cells and then verified the expression of 14-3-3σ and EMT related proteins, including E-cadherin, N-cadherin and Vimentin by western blotting. The changes of migration and invasion ability of NPC cell lines before and after transfected were determined by wound healing assay and Transwell assay. Results: miR-597 expression was upregulated in NPC cell lines and repaired in related NPC cell lines, which exhibit a potent tumor-forming effect. After inhibiting the miR-597 expression, its effect on NPC cell line was obviously decreased. Moreover, 14-3-3σ acts as a tumor suppressor gene and its expression in NPC cell lines is negatively correlated with miR-597. Here 14-3-3σ was identified as a downstream target gene of miR-597, and its downregulation by miR-597 drives epithelial-mesenchymal transition (EMT) and promotes the migration and invasion of NPC. Conclusion: Based on these findings, our study will provide theoretical and experimental evidences for molecular targeted therapy of NPC.


Breast Cancer ◽  
2021 ◽  
Author(s):  
Yingzi Zhang ◽  
Jiao Tian ◽  
Chi Qu ◽  
Yang Peng ◽  
Jinwei Lei ◽  
...  

Abstract Background Recent studies have indicated that serpin peptidase inhibitor, clade A, member 3 (SERPINA3) is a potential marker associated with tumor progression, which connoted that SERPINA3 is related to malignant phenotypes in cancer. However, the biological function of SERPINA3 in breast cancer (BC) remains unclear. Methods Bioinformatics data were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Immunohistochemical staining (IHC) was conducted to determine SERPINA3 expression. With strong aggressive abilities, triple-negative breast cancer (TNBC) cell lines (MDA-MB-231, BT549 and MDA-MB-436) were obtained to examine SERPINA3 expression and functions. Wound healing and Transwell assays were performed to measure cell migration and invasion. Cell Counting Kit-8 (CCK-8) assay was conducted to detect cell proliferation abilities and cell viabilities. Results SERPINA3 was upregulated in BC tissues. Functional assays suggested that overexpression of SERPINA3 significantly promoted cell proliferation, where migration and invasion of TNBC cells were accelerated. Knockdown of SERPINA3 had the opposite effects. These results causing by overexpression of SERPINA3 were also confirmed in non-TNBC cell lines. Overexpression of SERPINA3 remarkably enhanced the epithelial–mesenchymal transition (EMT) by upregulating the EMT markers and EZH2. In addition, the overexpression of SERPINA3 reduced the sensitivity of TNBC cells to cisplatin. Conclusion SERPINA3 can regulate the migration, invasion and EMT of TNBC cells and increased expression of SERPINA3 confers resistance to cisplatin in TNBC cells. We discern it is required for the regulation of BC progression and is a critical target for the clinical treatment of BC.


2021 ◽  
Vol 53 (4) ◽  
pp. 481-491
Author(s):  
Lizhi Lin ◽  
Jialiang Wen ◽  
Bangyi Lin ◽  
Hao Chen ◽  
Adheesh Bhandari ◽  
...  

Abstract In recent decades, the incidence of thyroid cancer (TC) has rapidly increased, leading us to explore the complex underlying mechanisms. We identified the gene Phospholipase C Delta 3 (PLCD3) as a potential oncogene in TC by conducting the whole transcriptome sequencing. Our study is to understand the oncogenic role of PLCD3 in TC. We verified the overexpression of PLCD3 in TC from The Cancer Genome Atlas, Gene Expression Omnibus databases, and a locally validated cohort. Clinical correlation analysis showed that PLCD3 expression was related to histological type, T stage, lymph node metastasis (LNM), and disease stage. The high expression of PLCD3 could be a distinguishing factor for TC and its LNM. The biological function was examined using small interfering RNA-transfected TC cell lines. Silenced PLCD3 could inhibit colony formation, migration, and invasion ability and promote apoptosis of TC cell lines. PLCD3 silencing reversed the epithelial-mesenchymal transition but induced the apoptotic progress. Further exploration revealed that PLCD3 might be associated with critical genes of the Hippo pathway. The expressions of RHOA, YAP1/TAZ, and their downstream targets were decreased significantly when PLCD3 was down-regulated. YAP1 overexpression rescued the tumor-suppressive effect caused by PLCD3 silencing. This study demonstrates that PLCD3 is an oncogene that supports tumorigenesis and progression in TC, and PLCD3 may be a potential target gene for TC treatment.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Yangke Cai ◽  
Meng Zhang ◽  
Xiaofu Qiu ◽  
Bingwei Wang ◽  
Yu Fu ◽  
...  

Background and Objective. FBXW7, known as a general tumor suppressor, is commonly lowly expressed in metastatic malignancies. We aim to investigate the potential influence of FBXW7 overexpression on renal cell carcinoma (RCC) metastasis. Methods. We employed quantitative real-time PCR (qRT-PCR) and Western blotting (WB) to quantify the FBXW7 expression in RCC cell lines. Upregulation of FBXW7 was performed in vitro on RCC cells using the lentivirus covering coding region FBXW7 cDNA sequence, and functional tests were performed to verify FBXW7 overexpression on migration and invasion of RCC cells. Moreover, WB was employed to determine the expressions of MMP-2, MMP-9, and MMP-13, as well as EMT markers in the transfected RCC cells. Results. FBXW7 was significantly downregulated in RCC cell lines, dominated by 786-O and ACHN, when compared to normal renal cell line HK-2. Moreover, upregulation of FBXW7 in 786-O and ACHN cell lines significantly inhibited cell migration and invasion, as well as EMT. Present study also showed that FBXW7 was involved in the migration and invasion of RCC cells via regulating the expressions of MMP-2, MMP-9, and MMP-13. Conclusion. Our findings demonstrate that upregulation of FBXW7 inhibits RCC metastasis and EMT. FBXW7 is a potential therapeutic target for RCC patients.


2019 ◽  
Vol 47 (3) ◽  
pp. 1319-1329 ◽  
Author(s):  
Jian Zhang ◽  
Hai Ma ◽  
Liu Yang ◽  
Hongchun Yang ◽  
Zhenxing He

Objectives Overexpression of human trophoblast cell surface antigen 2 (Trop2) has been observed in many cancers; however, its roles in proliferation, apoptosis, migration, and invasion of hepatocellular carcinoma (HCC) remain unclear. Thus, this study aimed to characterize the function of Trop2 in HCC. Methods Trop2 protein expression was detected by immunohistochemistry in HCC tissues. Cell proliferation, apoptosis, and invasion were respectively measured by CCK-8, flow cytometry, Transwell, and wound healing assays. Expression levels of epithelial–mesenchymal transition-related proteins and Trop2 protein in HCC cell lines were detected by western blotting after silencing of the TROP2 gene. Results Trop2 protein was highly expressed in HCC tissues and HCC cell lines. Trop2 mRNA and protein expression levels decreased in HepG2 and HCCLM3 cells after transfection with Trop2 siRNA. Silencing of the TROP2 gene in HepG2 and HCCLM3 cells strongly inhibited cell proliferation and migration, while enhancing cell apoptosis. Investigation of the molecular mechanism revealed that silencing of the TROP2 gene suppressed epithelial–mesenchymal transition of HepG2 and HCCLM3 cells. Conclusions The results of the present study may improve understanding of the role of Trop2 in regulation of cell proliferation and invasion, and may aid in development of novel therapy for HCC.


2017 ◽  
Vol 37 (3) ◽  
Author(s):  
Xin Chen ◽  
Bo Yue ◽  
Changming Zhang ◽  
Meihao Qi ◽  
Jianhua Qiu ◽  
...  

The aim of the present study was to explore the mechanism through which miR-130a-3p affects the viability, proliferation, migration, and invasion of nasopharyngeal carcinoma (NPC). Tissue samples were collected from the hospital department. NPC cell lines were purchased to conduct the in vitro and in vivo assays. A series of biological assays including MTT, Transwell, and wound healing assays were conducted to investigate the effects of miR-130a-3p and BACH2 on NPC cells. MiR-130a-3p was down-regulated in both NPC tissues and cell lines, whereas BACH2 was up-regulated in both tissues and cell lines. MiR-130a-3p overexpression inhibited NPC cell viability, proliferation, migration, and invasion but promoted cell apoptosis. The converse was true of BACH2, the down-regulation of which could inhibit the corresponding cell abilities and promote apoptosis of NPC cells. The target relationship between miR-130a-3p and BACH2 was confirmed. The epithelial–mesenchymal transition (EMT) pathway was also influenced by miR-130a-3p down-regulation. In conclusion, miR-130a-3p could bind to BACH2, inhibit NPC cell abilities, and promote cell apoptosis.


2020 ◽  
Author(s):  
Sisi Wei ◽  
Shiping Sun ◽  
Xinliang Zhou ◽  
Cong Zhang ◽  
Xiaoya Li ◽  
...  

Abstract A substantial fraction of transcripts are known as long noncoding RNAs (lncRNAs), and these transcripts play pivotal roles in the development of cancer. However, little information has been published regarding the functions of lncRNAs in oesophageal squamous cell carcinoma (ESCC) and the underlying mechanisms. In our previous studies, we demonstrated that small nucleolar RNA host gene 5 (SNHG5), a known lncRNA, is dysregulated in gastric cancer (GC). In this study, we explored the expression and function of SNHG5 in development of ESCC. SNHG5 was found to be downregulated in human ESCC tissues and cell lines, and this downregulation was associated with cancer progression, clinical outcomes and survival rates of ESCC patients. Furthermore, we also found that overexpression of SNHG5 significantly inhibited the proliferation, migration and invasion of ESCC cells in vivo and in vitro. Notably, we found that metastasis-associated protein 2 (MTA2) was pulled down by SNHG5 in ESCC cells using RNA pulldown assay. We also found that SNHG5 reversed the epithelial–mesenchymal transition by interacting with MTA2. In addition, overexpression of SNHG5 downregulated the transcription of MTA2 and caused its ubiquitin-mediated degradation. Thus, overexpression of MTA2 partially abrogated the effect of SNHG5 in ESCC cell lines. Furthermore, we found that MTA2 mRNA expression was significantly elevated in ESCC specimens, and a negative correlation between SNHG5 and MTA2 expression was detected. Overall, this study demonstrated, for the first time, that SNHG5-regulated MTA2 functions as an important player in the progression of ESCC and provide a new potential therapeutic strategy for ESCC.


2020 ◽  
Vol 19 ◽  
pp. 153303382094748
Author(s):  
Ju Yeon Oh ◽  
Yeon-Joo Lee ◽  
Eun Ho Kim

The prognosis of metastatic osteosarcoma (OS) remains poor with a <20% survival rate, particularly in cases of distant (non-lung) metastases. Tumor-treating field (TTF) therapy is a novel electric field-based treatment that causes metaphase arrest and tumor cell death, with the advantage of reduced side effects compared to radiation and chemotherapy. TTF shows promise in glioblastoma and other solid tumors; however, few studies have examined its potential in the treatment of osteosarcoma. Therefore, we explored the mechanism of TTF-induced metastasis inhibition and cell death using in vitro models. TTF (1.5 V/cm, 150 kHz) was applied to U2OS and KHOS/NP OS cell lines. In addition, a 3-dimensional culture system was established using these OS cell lines. Cell migration and invasion (i.e., metastatic potential) were examined using a wound-healing scratch assay and transwell assay, respectively. Western blotting of metastasis- and angiogenesis-related proteins was performed. TTF suppressed the migration of and invasion by OS cells and inhibited the expression of epithelial markers, thereby preventing epithelial-mesenchymal transition (EMT), a hallmark of metastasis. Moreover, TTF prevented angiogenesis in human tumor endothelial cells and downregulated matrix metalloproteinase-2 (MMP2) and vascular endothelial growth factor (VEGF) expression. Therefore, TTF shows potential as an improved treatment for osteosarcoma, warranting further preclinical studies in animal models to support clinical trials.


Sign in / Sign up

Export Citation Format

Share Document