scholarly journals Stenotrophomonas nematodicola sp. nov., a novel intestinal lifespan-prolonging bacterium for Caenorhabditis elegans that assists in host resistance to Bacillus nematocida colonization

Author(s):  
Lin Zhang ◽  
Yang Deng ◽  
Xuyang Wei ◽  
Yuqin Zhang ◽  
Qiuhong Niu

Abstract Background: The gut microbiota of Caenorhabditis elegans, a tiny worm that feeds on bacteria, is significantly dominated by the bacteria upon which it feeds. These bacteria may not only interfere with the intestinal flora of C. elegans but also assist in resisting pathogen infection. Understanding the interactions between the microbiota of C. elegans and pathogens will shed light on how to achieve biological control of agricultural pests. Results: The lifespan of Caenorhabditis elegans fed on strain CPCC 101271T was extended by approximately 40% compared with that of worms fed on Escherichia coli OP50. In addition, the colonization of C. elegans by the pathogenic bacterium Bacillus nematocida B16 was inhibited when it was pre-fed with strain CPCC 101271T. Based on a polyphasic taxonomy study including genotypic, chemotaxonomic and phenotypic characteristics, we propose that strain CPCC 101271T represents a novel bacterial species with the name Stenotrophomonas nematodicola sp. nov. and CPCC 101271T as the type strain. Metagenomic sequence analysis of the intestinal microbiota of C. elegans fed with strain CPCC 101271T and then infected with B16 revealed that pre-feeding with CPCC 101271T improved the diversity of intestinal bacteria, while the community structure varied significantly together with the fluctuation of Stenotrophomonas spp. and Bacillus spp. abundance during competition between strain CPCC 101271T and B16. Conclusions: The nematode microbiota strain CPCC 101271T assisted in its host resistance to the pathogen Bacillus nematocida colonization, so as to act as an intestinal life span-prolonging bacterium for C. elegans. The genotypic and phenotypic properties of strain CPCC 101271T supported to the proposal of strain CPCC 101271T as a novel species of the genus Stenotrophomonas.

Author(s):  
Rui Han ◽  
Yu Wang ◽  
Yang Deng ◽  
Yuqin Zhang ◽  
Lin Zhang ◽  
...  

AbstractThe soil-dwelling, opportunistic pathogenic bacterium "Bacillus nematocida" B16 exhibits strong killing activities against a variety of pathogenic nematodes via a “Trojan horse” mechanism that can kill worm species like Caenorhabditis elegans. The bacterial strain CPCC 101271 was previously isolated from the intestines of C. elegans that were recovered from natural habitats and can serve as a probiotic for C. elegans, while also assisting in resistance to infection by the pathogenic strain B16. In this study, the lifespan of C. elegans fed with strain CPCC 101271 cells was extended by approximately 40% compared with that of worms fed with Escherichia coli OP50 cells. In addition, the colonization of C. elegans by the pathogenic bacterium "B. nematocida" B16 was inhibited when pre-fed with strain CPCC 101271. Metagenomic sequence analysis of intestinal microbiota of C. elegans fed with strain CPCC 101271 and infected with B16 revealed that pre-feeding worms with CPCC 101271 improved the diversity of the intestinal bacteria. Moreover, community structure significantly varied in coordination with Stenotrophomonas spp. and Bacillus spp. abundances when competition between strains CPCC 101271 and B16 was evaluated. In conclusion, the nematode microbiota strain CPCC 101271 assisted in its host resistance to colonization by the pathogen "Bacillus nematocida" and can also promote life span-prolongation in C. elegans. These results underscore that understanding the interactions between C. elegans microbiota and pathogens can provide new insights into achieving effective biological control of agricultural pests.


2021 ◽  
Author(s):  
Rui Han ◽  
Yu Wang ◽  
Yang Deng ◽  
Yuqin Zhang ◽  
Lin Zhang ◽  
...  

Abstract The soil-dwelling opportunistic bacterium Bacillus nematocida B16 shows comparatively strong killing activities against a variety of pathogenic nematodes. A bacterial strain CPCC 101271T, isolated from intestines of C. elegans in natural habitats, was found not only to be probiotics for C. elegans but also assist in resisting pathogen B16 infection. The lifespan of Caenorhabditis elegans fed on strain CPCC 101271T was extended by approximately 40% compared with that of worms fed on Escherichia coli OP50. In addition, the colonization of C. elegans by the pathogenic bacterium B. nematocida B16 was inhibited when it was pre-fed with strain CPCC 101271T. Based on a polyphasic taxonomy study including genotypic, chemotaxonomic and phenotypic characteristics, we propose that strain CPCC 101271T represents a novel bacterial species with the name Stenotrophomonas nematodicola sp. nov. and CPCC 101271T as the type strain. Metagenomic sequence analysis of the intestinal microbiota of C. elegans fed with strain CPCC 101271T and then infected with B16 revealed that pre-feeding with CPCC 101271T improved the diversity of intestinal bacteria, while the community structure varied significantly together with the fluctuation of Stenotrophomonas spp. and Bacillus spp. abundance during competition between strain CPCC 101271T and B16. In conclusion, the nematode microbiota strain CPCC 101271T, a novel species of the genus Stenotrophomonas, assisted in its host resistance to the pathogen Bacillus nematocida colonization, so as to act as an intestinal life span-prolonging for C. elegans.


2020 ◽  
Vol 8 (4) ◽  
pp. 618
Author(s):  
Yuqing Huang ◽  
Jan E. Kammenga

The bacterivorous nematode Caenorhabditis elegans is an important model species for understanding genetic variation of complex traits. So far, most studies involve axenic laboratory settings using Escherichia coli as the sole bacterial species. Over the past decade, however, investigations into the genetic variation of responses to pathogenic microbiota have increasingly received attention. Quantitative genetic analyses have revealed detailed insight into loci, genetic variants, and pathways in C. elegans underlying interactions with bacteria, microsporidia, and viruses. As various quantitative genetic platforms and resources like C. elegans Natural Diversity Resource (CeNDR) and Worm Quantitative Trait Loci (WormQTL) have been developed, we anticipate that expanding C. elegans research along the lines of genetic variation will be a treasure trove for opening up new insights into genetic pathways and gene functionality of microbiota interactions.


2020 ◽  
Author(s):  
Qing Sun ◽  
Nicole M. Vega ◽  
Bernardo Cervantes ◽  
Christopher P. Mancuso ◽  
Ning Mao ◽  
...  

AbstractAnimals rely on the gut microbiome to process complex food compounds that the host cannot digest and to synthesize nutrients that the host cannot produce. New systems are needed to study how the expanded metabolic capacity provided by the gut microbiome impacts the nutritional status and health of the host. Here we colonized the nematode Caenorhabditis elegans gut with cellulolytic bacteria that enabled C. elegans to utilize cellulose, an otherwise indigestible substrate, as a carbon source. The nutritional benefits of colonization with cellulolytic bacteria were assayed directly, by incorporation of isotopic biomass, and indirectly, as host larval yield resulting from glucose release in the gut. As a community component in the worm gut, cellulolytic bacteria can also support additional bacterial species with specialized roles, which we demonstrate by using Lactobacillus to protect against Salmonella infection. As a model system, C. elegans colonized with cellulolytic bacteria can be used to study microbiome-host interactions. Engineered microbiome communities may provide host organisms with novel functions, such as the ability to use more complex nutrient sources and to fight against pathogen infections.One Sentence SummaryHeterologous bacteria colonizing an animal gut help digest complex sugars to provide nutrition for the host in a model system.


2018 ◽  
Vol 120 (8) ◽  
pp. 872-880 ◽  
Author(s):  
Takaya Sugawara ◽  
Kazuichi Sakamoto

AbstractProbiotics are bacteria among the intestinal flora that are beneficial for human health. Bifidobacterium longum (BL) is a prototypical probiotic that is widely used in yogurt making, supplements and others. Although various physiological effects of BL have been reported, those associated with longevity and anti-ageing still remain elusive. Here we aimed to elucidate the physiological effects of killed BL (BR-108) on stress tolerance and longevity of Caenorhabditis elegans and their mechanisms. Worms fed killed BL in addition to Escherichia coli (OP50) displayed reduced body length in a BL dose-dependent manner. When compared with those fed E. coli alone, these worms had a higher survival rate following heat stress at 35°C and hydrogen peroxide-induced oxidative stress. A general decrease in motility was observed over time in all worms; however, killed BL-fed ageing worms displayed increased movement and longer life span than those fed E. coli alone. However, the longevity effect was suppressed in sir-2.1, daf-16 and skn-1-deficient worms. Killed BL induced DAF-16 nuclear localisation and increased the expression of the DAF-16 target gene hsp-12.6. These results revealed that the physiological effects of killed BL in C. elegans were mediated by DAF-16 activation. These findings contradict previous observations with different Bifidobacterium and Lactobacillus strains, which showed the role for SKN-1 independently of DAF-16.


2014 ◽  
Vol 80 (17) ◽  
pp. 5411-5418 ◽  
Author(s):  
S. Anaid Diaz ◽  
Olivier Restif

ABSTRACTCaenorhabditis elegansis frequently used as a model species for the study of bacterial virulence and innate immunity. In recent years, diverse mechanisms contributing to the nematode's immune response to bacterial infection have been discovered. Yet despite growing interest in the biochemical and molecular basis of nematode-bacterium associations, many questions remain about their ecology. Although recent studies have demonstrated that free-living nematodes could act as vectors of opportunistic pathogens in soil, the extent to which worms may contribute to the persistence and spread of these bacteria has not been quantified. We conducted a series of experiments to test whether colonization of and transmission betweenC. elegansnematodes could enable two opportunistic pathogens (Salmonella entericaandPseudomonas aeruginosa) to spread on agar plates occupied byEscherichia coli. We monitored the transmission ofS. entericaandP. aeruginosafrom single infected nematodes to their progeny and measured bacterial loads both within worms and on the plates. In particular, we analyzed three factors affecting the dynamics of bacteria: (i) initial source of the bacteria, (ii) bacterial species, and (iii) feeding behavior of the host. Results demonstrate that worms increased the spread of bacteria through shedding and transmission. Furthermore, we found that despiteP. aeruginosa's relatively high transmission rate among worms, its pathogenic effects reduced the overall number of worms colonized. This study opens new avenues to understand the role of nematodes in the epidemiology and evolution of pathogenic bacteria in the environment.


2002 ◽  
Vol 69 ◽  
pp. 117-134 ◽  
Author(s):  
Stuart M. Haslam ◽  
David Gems ◽  
Howard R. Morris ◽  
Anne Dell

There is no doubt that the immense amount of information that is being generated by the initial sequencing and secondary interrogation of various genomes will change the face of glycobiological research. However, a major area of concern is that detailed structural knowledge of the ultimate products of genes that are identified as being involved in glycoconjugate biosynthesis is still limited. This is illustrated clearly by the nematode worm Caenorhabditis elegans, which was the first multicellular organism to have its entire genome sequenced. To date, only limited structural data on the glycosylated molecules of this organism have been reported. Our laboratory is addressing this problem by performing detailed MS structural characterization of the N-linked glycans of C. elegans; high-mannose structures dominate, with only minor amounts of complex-type structures. Novel, highly fucosylated truncated structures are also present which are difucosylated on the proximal N-acetylglucosamine of the chitobiose core as well as containing unusual Fucα1–2Gal1–2Man as peripheral structures. The implications of these results in terms of the identification of ligands for genomically predicted lectins and potential glycosyltransferases are discussed in this chapter. Current knowledge on the glycomes of other model organisms such as Dictyostelium discoideum, Saccharomyces cerevisiae and Drosophila melanogaster is also discussed briefly.


2019 ◽  
Vol 31 (1) ◽  
pp. 48-51
Author(s):  
Suha S Hassan ◽  
Nidhal H. Ghaib ◽  
Batool H Al-Ghurabi

Background: The microorganisms can impend the life of health care professional and particularly the dental practitioners. They can be transmitted by different ways like airborne and droplet transmission. The current study was carried out to identify whether the arch wires that received from the manufactures are free from microbial contamination and to determine the bacterial species attached to the arch wires. Materials and Methods: This study involved eighty samples, consisted of two types of arch wires (nitinol and stainless-steel) from four companies (3M, G&H, Jiscop, OrthoTechnology). These wires inserted in a plane tube that contains 10 -ml of (Tris [tris(hydroxymethyl)aminomethane] and EDTA (ethylenediaminetetraacetic acid) tris-EDTA and brain heart infusion (BHI) broth. A 0.1 ml was withdrawn from the tube and spread on agar plates. The control groups consist of 16 plane tube (8 tubes with tris-EDTA and other 8 tubes with (BHI). Results: Microbial sampling yielded growth from 5 of the 80 arch wires. The predominant bacteria that isolated were Bacillus spp. No growth was recovered from 75 of the samples and from controls. The bacteria were isolated by BHI reagent and no growth was observed by tris-EDTA reagent with statistically significant difference (P<0.05). The Bacillus spp. found only in the G&H and Jiscop companies, however, no statistically significant difference was found among them (P>0.05). With regard to the presence and distribution of bacteria according to the types of wires, the present results clarified that cases of contamination with Bacillus spp. were found in the nitinol arch wires with statistically significant difference (P<0.05). Conclusions: The results of the current study revealed low count of bacterial contamination in the two types of companies (G&H and Jiscop). Not all materials that received from the manufactures are free from contamination and an effective sterilization regimen is needed to avoid cross-contamination.


2021 ◽  
Vol 13 ◽  
Author(s):  
Abdullah Almotayri ◽  
Jency Thomas ◽  
Mihiri Munasinghe ◽  
Markandeya Jois

Background: The antidepressant mianserin has been shown to extend the lifespan of Caenorhabditis elegans (C. elegans), a well-established model organism used in aging research. The extension of lifespan in C. elegans was shown to be dependent on increased expression of the scaffolding protein (ANK3/unc-44). In contrast, antidepressant use in humans is associated with an increased risk of death. The C. elegans in the laboratory are fed Escherichia coli (E. coli), a diet high in protein and low in carbohydrate, whereas a typical human diet is high in carbohydrates. We hypothesized that dietary carbohydrates might mitigate the lifespan-extension effect of mianserin. Objective: To investigate the effect of glucose added to the diet of C. elegans on the lifespan-extension effect of mianserin. Methods: Wild-type Bristol N2 and ANK3/unc-44 inactivating mutants were cultured on agar plates containing nematode growth medium and fed E. coli. Treatment groups included (C) control, (M50) 50 μM mianserin, (G) 73 mM glucose, and (M50G) 50 μM mianserin and 73 mM glucose. Lifespan was determined by monitoring the worms until they died. Statistical analysis was performed using the Kaplan-Meier version of the log-rank test. Results: Mianserin treatment resulted in a 12% increase in lifespan (P<0.05) of wild-type Bristol N2 worms but reduced lifespan by 6% in ANK3/unc-44 mutants, consistent with previous research. The addition of glucose to the diet reduced the lifespan of both strains of worms and abolished the lifespan-extension by mianserin. Conclusion: The addition of glucose to the diet of C. elegans abolishes the lifespan-extension effects of mianserin.


2008 ◽  
Vol 19 (5) ◽  
pp. 2154-2168 ◽  
Author(s):  
Corey L. Williams ◽  
Marlene E. Winkelbauer ◽  
Jenny C. Schafer ◽  
Edward J. Michaud ◽  
Bradley K. Yoder

Meckel-Gruber syndrome (MKS), nephronophthisis (NPHP), and Joubert syndrome (JBTS) are a group of heterogeneous cystic kidney disorders with partially overlapping loci. Many of the proteins associated with these diseases interact and localize to cilia and/or basal bodies. One of these proteins is MKS1, which is disrupted in some MKS patients and contains a B9 motif of unknown function that is found in two other mammalian proteins, B9D2 and B9D1. Caenorhabditis elegans also has three B9 proteins: XBX-7 (MKS1), TZA-1 (B9D2), and TZA-2 (B9D1). Herein, we report that the C. elegans B9 proteins form a complex that localizes to the base of cilia. Mutations in the B9 genes do not overtly affect cilia formation unless they are in combination with a mutation in nph-1 or nph-4, the homologues of human genes (NPHP1 and NPHP4, respectively) that are mutated in some NPHP patients. Our data indicate that the B9 proteins function redundantly with the nephrocystins to regulate the formation and/or maintenance of cilia and dendrites in the amphid and phasmid ciliated sensory neurons. Together, these data suggest that the human homologues of the novel B9 genes B9D2 and B9D1 will be strong candidate loci for pathologies in human MKS, NPHP, and JBTS.


Sign in / Sign up

Export Citation Format

Share Document