scholarly journals Near-Infrared Heterojunction Field Modulated Phototransistors with Distinct Photodetection/Photostorage Switching Feature for Artificial Visuals

Author(s):  
Jun Wang ◽  
Xiaoyang Du ◽  
Jiayue Han ◽  
Zhenghan Zhang ◽  
Zeyu He ◽  
...  

Abstract With the rising demand of recording, computing and image capture, advanced optoelectronic detection, storage and logic devices are highly pursued. Nevertheless, multi-functional vision chip based on infrared detection and memory switching has never been demonstrated. Here, by utilizing the electronic extraction layer ZnO and face-on orientation of D-A, we exhibit the broadband visible to near-infrared photo-response and photo-storage characters on graphene phototransistor. Functions as photodetection and photo-storage can be switched with the variation of gate voltage. The device demonstrates high photo-responsivity up to 1.88 × 106 A/W at 895 nm corresponding detectivity of 4.8 × 1012 Jones. Importantly, the rewritable and switching infrared optoelectronic memory function can be achieved with good retention over 104 s. The both retinomorphic vision and memorial preprocessing in artificial visual are simultaneously realized by photodetection/photostorage switching property. Such nearly all-solution processes in our phototransistors may open up the path for the large-scale and easy manufacturing infrared multifunctional bio-optoelectronic device.

2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Samuel V. Pedersen ◽  
Florent Muramutsa ◽  
Joshua D. Wood ◽  
Chad Husko ◽  
David Estrada ◽  
...  

Abstract Adopting black phosphorus (BP) as a material in electronic and optoelectronic device manufacturing requires the development and understanding of a large-scale synthesis technique. To that end, high-energy planetary ball milling is demonstrated as a scalable synthesis route, and the mechanisms and conversion kinetics of the BP phase transformation are investigated. During the milling process, media collisions rapidly compress amorphous red phosphorus (RP) into crystalline, orthorhombic BP flakes, resulting in a conversion yield of ≈90% for ≈5 g of bulk BP powder. Milling conversion kinetics, monitored via ex situ x-ray diffraction, manifest a sigmoidal behavior best described by the Avrami rate model with each impact of sufficient energy (>25 mJ) producing BP nuclei; the process appears to be limited by grain growth. Using a kinematic model for ball trajectories and impact energies, the optimum milling condition is determined to be an impact energy near ≈25 mJ and a milling dose near ≈100 kJ/gram. Photoexcitation of exfoliated BP flakes reveals emission in the near-infrared, indicating the formation of few-layer BP, a promising advance for optoelectronic device applications.


2020 ◽  
Vol 185 ◽  
pp. 01023
Author(s):  
Yuan An ◽  
Jianing Li ◽  
Cenyue Chen

The intermittence and uncertainty of wind power and photovoltaic power have hindered the large-scale development of both. Therefore, it is very necessary to properly configure energy storage devices in the wind-solar complementary power grid. For the hybrid energy storage system composed of storage battery and supercapacitor, the optimization model of hybrid energy storage capacity is established with the minimum comprehensive cost as the objective function and the energy saving and charging state as the constraints. A simulated annealing artificial fish school algorithm with memory function is proposed to solve the model. The results show that the hybrid energy storage system can greatly save costs and improve system economy.


2021 ◽  
Vol 502 (3) ◽  
pp. 3942-3954
Author(s):  
D Hung ◽  
B C Lemaux ◽  
R R Gal ◽  
A R Tomczak ◽  
L M Lubin ◽  
...  

ABSTRACT We present a new mass function of galaxy clusters and groups using optical/near-infrared (NIR) wavelength spectroscopic and photometric data from the Observations of Redshift Evolution in Large-Scale Environments (ORELSE) survey. At z ∼ 1, cluster mass function studies are rare regardless of wavelength and have never been attempted from an optical/NIR perspective. This work serves as a proof of concept that z ∼ 1 cluster mass functions are achievable without supplemental X-ray or Sunyaev-Zel’dovich data. Measurements of the cluster mass function provide important contraints on cosmological parameters and are complementary to other probes. With ORELSE, a new cluster finding technique based on Voronoi tessellation Monte Carlo (VMC) mapping, and rigorous purity and completeness testing, we have obtained ∼240 galaxy overdensity candidates in the redshift range 0.55 < z < 1.37 at a mass range of 13.6 < log (M/M⊙) < 14.8. This mass range is comparable to existing optical cluster mass function studies for the local universe. Our candidate numbers vary based on the choice of multiple input parameters related to detection and characterization in our cluster finding algorithm, which we incorporated into the mass function analysis through a Monte Carlo scheme. We find cosmological constraints on the matter density, Ωm, and the amplitude of fluctuations, σ8, of $\Omega _{m} = 0.250^{+0.104}_{-0.099}$ and $\sigma _{8} = 1.150^{+0.260}_{-0.163}$. While our Ωm value is close to concordance, our σ8 value is ∼2σ higher because of the inflated observed number densities compared to theoretical mass function models owing to how our survey targeted overdense regions. With Euclid and several other large, unbiased optical surveys on the horizon, VMC mapping will enable optical/NIR cluster cosmology at redshifts much higher than what has been possible before.


2021 ◽  
Vol 503 (1) ◽  
pp. 270-291
Author(s):  
F Navarete ◽  
A Damineli ◽  
J E Steiner ◽  
R D Blum

ABSTRACT W33A is a well-known example of a high-mass young stellar object showing evidence of a circumstellar disc. We revisited the K-band NIFS/Gemini North observations of the W33A protostar using principal components analysis tomography and additional post-processing routines. Our results indicate the presence of a compact rotating disc based on the kinematics of the CO absorption features. The position–velocity diagram shows that the disc exhibits a rotation curve with velocities that rapidly decrease for radii larger than 0.1 arcsec (∼250 au) from the central source, suggesting a structure about four times more compact than previously reported. We derived a dynamical mass of 10.0$^{+4.1}_{-2.2}$ $\rm {M}_\odot$ for the ‘disc + protostar’ system, about ∼33 per cent smaller than previously reported, but still compatible with high-mass protostar status. A relatively compact H2 wind was identified at the base of the large-scale outflow of W33A, with a mean visual extinction of ∼63 mag. By taking advantage of supplementary near-infrared maps, we identified at least two other point-like objects driving extended structures in the vicinity of W33A, suggesting that multiple active protostars are located within the cloud. The closest object (Source B) was also identified in the NIFS field of view as a faint point-like object at a projected distance of ∼7000 au from W33A, powering extended K-band continuum emission detected in the same field. Another source (Source C) is driving a bipolar $\rm {H}_2$ jet aligned perpendicular to the rotation axis of W33A.


2021 ◽  
Vol 09 (02) ◽  
pp. E233-E238
Author(s):  
Rajesh N. Keswani ◽  
Daniel Byrd ◽  
Florencia Garcia Vicente ◽  
J. Alex Heller ◽  
Matthew Klug ◽  
...  

Abstract Background and study aims Storage of full-length endoscopic procedures is becoming increasingly popular. To facilitate large-scale machine learning (ML) focused on clinical outcomes, these videos must be merged with the patient-level data in the electronic health record (EHR). Our aim was to present a method of accurately linking patient-level EHR data with cloud stored colonoscopy videos. Methods This study was conducted at a single academic medical center. Most procedure videos are automatically uploaded to the cloud server but are identified only by procedure time and procedure room. We developed and then tested an algorithm to match recorded videos with corresponding exams in the EHR based upon procedure time and room and subsequently extract frames of interest. Results Among 28,611 total colonoscopies performed over the study period, 21,170 colonoscopy videos in 20,420 unique patients (54.2 % male, median age 58) were matched to EHR data. Of 100 randomly sampled videos, appropriate matching was manually confirmed in all. In total, these videos represented 489,721 minutes of colonoscopy performed by 50 endoscopists (median 214 colonoscopies per endoscopist). The most common procedure indications were polyp screening (47.3 %), surveillance (28.9 %) and inflammatory bowel disease (9.4 %). From these videos, we extracted procedure highlights (identified by image capture; mean 8.5 per colonoscopy) and surrounding frames. Conclusions We report the successful merging of a large database of endoscopy videos stored with limited identifiers to rich patient-level data in a highly accurate manner. This technique facilitates the development of ML algorithms based upon relevant patient outcomes.


Author(s):  
Pengrui Zhuang ◽  
Ke Xiang ◽  
Xiangxi Meng ◽  
Guohe Wang ◽  
Ziyuan Li ◽  
...  

A facile and green method was developed to fabricate Nd-DTPA on a large scale without byproducts for CT/spectral CT and NIR II fluorescence imaging of the gastrointestinal tract in vivo.


2014 ◽  
Vol 189 ◽  
pp. 120-128 ◽  
Author(s):  
José Alves-Rausch ◽  
Roland Bienert ◽  
Christian Grimm ◽  
Dirk Bergmaier

Author(s):  
Marco Vinicio Alban ◽  
Haechang Lee ◽  
Hanul Moon ◽  
Seunghyup Yoo

Abstract Thin dry electrodes are promising components in wearable healthcare devices. Assessing the condition of the human body by monitoring biopotentials facilitates the early diagnosis of diseases as well as their prevention, treatment, and therapy. Existing clinical-use electrodes have limited wearable-device usage because they use gels, require preparation steps, and are uncomfortable to wear. While dry electrodes can improve these issues and have demonstrated performance on par with gel-based electrodes, providing advantages in mobile and wearable applications; the materials and fabrication methods used are not yet at the level of disposable gel electrodes for low-cost mass manufacturing and wide adoption. Here, a low-cost manufacturing process for thin dry electrodes with a conductive micro-pyramidal array is presented for large-scale on-skin wearable applications. The electrode is fabricated using micromolding techniques in conjunction with solution processes in order to guarantee ease of fabrication, high device yield, and the possibility of mass production compatible with current semiconductor production processes. Fabricated using a conductive paste and an epoxy resin that are both biocompatible, the developed micro-pyramidal array electrode operates in a conformal, non-invasive manner, with low skin irritation, which ensures improved comfort for brief or extended use. The operation of the developed electrode was examined by analyzing electrode-skin-electrode impedance, electroencephalography, electrocardiography, and electromyography signals and comparing them with those measured simultaneously using gel electrodes.


Proceedings ◽  
2019 ◽  
Vol 27 (1) ◽  
pp. 8 ◽  
Author(s):  
David Perpetuini ◽  
Antonio Maria Chiarelli ◽  
Vincenzo Vinciguerra ◽  
Piergiusto Vitulli ◽  
Sergio Rinella ◽  
...  

Photoplethysmography (PPG) is a non-invasive technique that employs near infrared light to estimate periodic oscillations in blood volume within arteries caused by the pulse pressure wave. Importantly, combined Electrocardiography (ECG) and PPG can be employed to quantify arterial stiffness. The capabilities of a home-made multi-channel PPG-ECG device (7 PPG probes, 4 ECG derivations) to evaluate arterial ageing were assessed. The high numerosity of channels allowed to estimate arterial stiffness at multiple body locations, without supra-systolic cuff occlusion, providing a fast and accurate examination of cardiovascular status and potentially allowing large scale clinical screening of cardiovascular risk.


2002 ◽  
Vol 29 (1) ◽  
pp. 91 ◽  
Author(s):  
Andrew P. Woolnough ◽  
William J. Foley

Near-infrared spectroscopy (NIRS) was used to predict the nutritive value of forage species available to the critically endangered northern hairy-nosed wombat (Lasiorhinus krefftii). Nutritive attributes of the forage successfully estimated included total nitrogen concentration, fibre (including neutral detergent fibre, acid detergent fibre and acid lignin), organic matter, water soluble carbohydrates and in vitro dry matter digestibility. The reported results demonstrate the seasonal variability of the forage resource available to L. krefftii in its tropical savanna habitat. Multivariate modelling of the spectra enabled the nutritive value of forage samples to be estimated with coefficients of determination (r2) of 0.770–0.995 and standard errors of the cross-validation of 0.070–2.850 using a modified partial least-squares analysis technique. The standard error of the laboratory was 0.02–1.42. This study demonstrates that broad-based NIRS predictive equations can be used to predict the nutritive value of a number of plant types available to a herbivore over time. By using NIRS the analyst can rapidly analyse large numbers of samples with limited reduction of precision, thereby enabling large-scale ecological applications that may have previously been impeded by time and costs.


Sign in / Sign up

Export Citation Format

Share Document