scholarly journals Key technologies of ecological restoration and analysis of slope stability of spontaneous combustion of slag dumps in gullies

Author(s):  
Guozhen Zhao ◽  
Yiqing LYU ◽  
Shuai Wang ◽  
Chao Liu

Abstract There are potential safety hazards such as spontaneous combustion, high temperature explosion, rainfall-induced landslide, and others within slag dumps in gullies, which seriously endanger the lives and property of surrounding residents. In this paper, the slag dump on the north side of Yumen River in Ximing Mine was taken as the project background. Aimed at the existing problems of environmental pollution and slope stability of the spontaneous combustion of slag dumps in gullies, the key technology of fire extinguishing by shallow jet deep hole grouting and the technology of foreign soil spray seeding with multiple soil fixation measures were put forward. The safety factor of gangue hill slopes under natural conditions, earthquakes and rainstorms was calculated by Lizheng Slope Stability Analysis Software, and the displacement field and the stress field of dangerous sections were analyzed by MIDAS GTS NX, a finite element simulation software. The calculation and analysis results show that the slope of the slag dump is in a stable state under natural conditions. Under the working conditions during earthquakes and rainstorms, the safety factor of the slope of the slag dump is decreased obviously, but the slope is still in a basically stable state. After 2 years' follow-up monitoring, the ecological restoration effect of the slag dump is good and the slope is stable.

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Kuiming Liu ◽  
Hui Li ◽  
Shihui Pang ◽  
Meng Mi ◽  
Jianping Chen ◽  
...  

Weibei area is the largest limestone resource area in Shaanxi Province, which is an important boundary to distinguish the climate difference between the south and the north of China, and also a significant ecological safety protection barrier in the northwest of China. The complex geological environment and harsh environment make the mining area have serious geological disaster hidden danger. Based on the site engineering geological data of typical limestone quarry slope in Weibei, this paper constructs a three-dimensional geological model, uses FLAC3D software to simulate excavation, and analyzes the stress and strain law of the quarry slope. SlopeLE software was used to analyze the safety factor of slope stability and the potential slip surface before and after taking reinforcement measures. The results show the following: (1) Limestone is the main rock component of the mine, followed by mudstone. The joint and fissure are developed, the rock mass is broken, and the hidden danger of engineering geological disaster is high. (2) There is a sliding trend in both sides during excavation, and the maximum vertical displacement is 2.1 cm. (3) If the slope is reinforced according to the design scheme, the slope stability safety factor will be increased from 1.062 to 1.203 in a stable state, which greatly improves the stability of the slope and provides a guarantee for human and financial resources.


Author(s):  
Ahmed Bouajaj ◽  
Lahcen Bahi ◽  
Latifa Ouadif ◽  
Mohamed Awa

An analysis of slope stability using Geographic Information System (GIS) is presented in this paper. The methodology is based on the calculation of the safety factor in 2D and 3D using ArcGis. Hovland's Method in 3D and 2D were used in the stability analysis of the slope located at the 34 kilometer point (K.P.34) on the highway in the North of Morocco connecting Tangier to Ksar Sghir. Results shows that the safety factors obtained in 3D are always higher than those obtained in 2D and the slope becomes unstable when the water table level is less than 1 m.


2019 ◽  
Vol 45 (1) ◽  
pp. 75-84
Author(s):  
Issam Touhami ◽  
Ali El khorchani ◽  
Zouheir Nasr ◽  
Mohamed tahar Elaieb ◽  
Touhami Rzigui ◽  
...  

Author(s):  
F. Wittmann ◽  
C. Schmitt ◽  
F. Adam ◽  
P. Dierken

AbstractThe Energyhub@Sea concept is one of the four research applications of the Space@Sea project funded by the EU’s Horizon 2020 research program (GA number: 774253). The focus of this paper is the evaluation of the energy demands of an energy self-sufficient maintenance platform at the location of Helgoland in the North Sea. In view of this, a standardized modular floater was developed as an offshore wind operation and maintenance base, which in the following paper is referred to as an O&M hub. The O&M hub is intended to be equipped with accommodation facilities and various renewable energy infrastructure as well as spare parts logistics, enabling the platform to perform maintenance of offshore gearless wind turbines with a capacity of up to 10 MW. To be energy self-sustaining, an energy supply system for the hub was developed and simulated at a resolution of ten minutes by means of the Top-Energy simulation software, a commercial software tool. As a basis for the simulation, an approach for the automated determination of flexible load profiles, in resolutions of up to ten minutes was developed. This load profile generator creates load profiles on the basis of environmental conditions, technical characteristics, and expected behaviors of the inhabitants. On the basis of the generated load profiles, a first layout (referred to as baseline scenario) for the different components of the energy system was evaluated and tested through simulation. In a second step, three optimization scenarios were developed and simulated with regards to the financial feasibility of the Energyhub.


2019 ◽  
Vol 136 ◽  
pp. 04023
Author(s):  
Ming Zhao ◽  
Ke Li ◽  
Hong Yan Guo ◽  
KaiCheng Hua

Based on the special geological conditions of a tunnel in Qingyuan section of Huizhou-Zhanzhou Expressway, FLAC3d numerical simulation software is used to simulate the rheological properties and instability of surrounding rock in large-section fully weathered sandstone section, and the stability and loss of surrounding rock are analyzed. The deformation of the dome and the face at steady state is analyzed. It is found that: 1) when the surrounding rock is in a stable state, the deformation curve of the dome is smooth. When the surrounding rock of the face is unstable, the front of the face appears ahead. Deformation should be first strengthened on the surrounding rock in front of the face. 2) The arched foot is an important part of the instability of the surrounding rock. In order to prevent the expansion of the collapsed part, the arched part should be reinforced. 3) In order to obtain the limit state of surrounding rock stability, the strength of surrounding rock is reduced, and the strength reduction coefficient corresponding to the displacement sudden point is taken as the safety factor of rock stability around the hole, and the stability safety coefficients of surrounding rock of each construction step are greater than 1.2. 4) The dynamic standard values of deformation control in the whole construction stage are obtained by analyzing the deformation curves of each data monitoring point with time in the corresponding time period of each construction step.


2014 ◽  
Vol 915-916 ◽  
pp. 356-361
Author(s):  
Zheng Wen Xie

FDS simulation software was used to establish the full size lampblack physics model of single wind pipe, using the orthogonal design method design of analog calculation conditions, research in the nozzle pressure, the droplet radius, nozzle, flow quantity and injection angle parameters under different conditions of water mist fire extinguishing effect. Based on a full-scale combustion and water mist fire extinguishing experiment, the water mist fire suppression was observed and test analysis etc, to better understand the flue water mist fire extinguishing feasibility, provides the theory basis for the design of efficient, reliable flue fire extinguishing system.


2013 ◽  
Vol 634-638 ◽  
pp. 3688-3695 ◽  
Author(s):  
Yang Xiao ◽  
Shu Gang Li ◽  
Jun Deng ◽  
Xu Wang

In China, as popularizing the technology of fully mechanized top-coal mining and increasing the strength and depth of mining, the gutter-up gob can be formed. But the work of fire preventing and extinguishing for its coal spontaneous combustion is more complexity and difficulty. In this paper, based on geology parameters and mining practice for 93up12 fully mechanized top-coal caving face in Nantun coalmine, the form and character of gutter-up gob are analyzed. According to the hidden danger of high temperature for spontaneous combustion in the gob, we adopt the comprehension technologies of fire extinguishing and preventing which include sealing air-leakage, grouting, and injecting compound gel with fly-ash, foam of retarding oxidation, liquid carbon dioxide, and gas of nitrogen. By putting in practice the pre-controlling technology in gutter-up gob and monitoring data of target gases, it obtains a good effect and ensures the safety in production of the fully-mechanized top-coal caving face.


2013 ◽  
Vol 275-277 ◽  
pp. 1423-1426
Author(s):  
Lin Kuang ◽  
Ai Zhong Lv ◽  
Yu Zhou

Based on finite element analysis software ANSYS, slope stability analysis is carried out by Elastic limiting equilibrium method proposed in this paper. A series of sliding surface of the slope can be assumed firstly, and then stress field along the sliding surface is analyzed as the slope is in elastic state. The normal and tangential stresses along each sliding surface can be obtained, respectively. Then the safety factor for each slip surface can be calculated, the slip surface which the safety factor is smallest is the most dangerous sliding surface. This method is different from the previous limit equilibrium method. For the previous limit equilibrium method, the normal and tangential stresses along the sliding surface are calculated based on many assumptions. While, the limit equilibrium method proposed in this paper has fewer assumptions and clear physical meaning.


2012 ◽  
Vol 594-597 ◽  
pp. 222-225
Author(s):  
Wen Juan Feng ◽  
Xiao Dong Ju ◽  
Zheng Sheng Zou

Although anti-slide pile take a key position in slope-treating measures, the method of designing is far from perfect. The methods used in actual projects are based on the rigid body limit equilibrium methods. There is a tendency to using numerical methods in the progress of pile-designing. The safety factor of landslide is calculated according to shear strength reduction theory in the numerical simulation software. Using the shearing forces on pile and the safety factor can ascertain the position of anti-slide piles, the area and distance of piles. For numerical simulation can well perform the simulation slope moving and the load on piles and can give a more reasonable designing.


2021 ◽  
pp. 46-54
Author(s):  
Muhammad Amin Syam ◽  
Heriyanto Heriyanto ◽  
Hamzah Umar

PT Belayan Internasional Coal is an open-pit system mining company, one of its geotechnical activities is the construction of the slopes. Slope stability analysis used the Bishop Simplified method to obtain the value of the dynamic safety factor (≥ 1,1). Currently, the value of the Safety Factor (FK) is an indicator in determining whether the slope is stable or not. The parameters used in the slope stability analysis are the physical and mechanical properties of the rock, namely weight (ɣ), cohesion value (c), and internal shear angle (∅). From the results of dynamic overall slope calculations, the recommended overall slope is constructed with an individual slope angle of 55°, a bench width of 5 meters, a height of 10 meters, and the number of individual slopes of 8 slopes. This design will produce dimensions of the overall slope with 41° slope angle, 80 meters high, and has a dynamic safety factor value of 1,102 with the water-saturated condition. Thus, the slopes are in stable condition.


Sign in / Sign up

Export Citation Format

Share Document