scholarly journals Gosha-jinki-Gan (GJG) shows anti-aging effects through suppression of TNF-α production by Chikusetsusaponin V

Author(s):  
Keisuke Hagihara ◽  
Kazuto Nunomura ◽  
Bangzhong Lin ◽  
Megumi Fumimoto ◽  
Junko Watanabe ◽  
...  

Abstract Frailty develops due to multiple factors, such as sarcopenia, chronic pain, and dementia. Go-sha-jinki-Gan (GJG) is a traditional Japanese herbal medicine used for age-related symptoms. We have reported that GJG improved sarcopenia, chronic pain, and central nervous system function through suppression of TNF-α production. In the present study, GJG was found to reduce the production of TNF-α in the soleus muscle of senescence-accelerated mice at 12 weeks and 36 weeks. GJG did not change the differentiation of C2C12 cells with 2% horse serum. GJG significantly decreased the expression of MAFbx induced by TNF-α in C2C12 cells on real-time PCR. TNF-α significantly decreased the expression of PGC-1α and negated the enhancing effect of GJG for the expression of PGC-1α on digital PCR. Examining 20 chemical compounds derived from GJG, cinnamaldehyde from cinnamon bark and Chikusetsusaponin V (CsV) from Achyrantes Root dose-dependently decreased the production of TNF-⍺ in RAW264.7 cells stimulated by LPS. CsV inhibited the nuclear translocation of NF-κB p65 in RAW264.7 cells. CsV showed low permeability using Caco-2 cells. However, the plasma concentration of CsV was detected from 30 minutes to 6 h and peaked at 1 h in the CD1 (ICR) mice after a single dose of GJG. In 8-week-old SAMP8 mice fed 4% (w/w) GJG from one week to four weeks, the plasma CsV concentration ranged from 0.0500 to 10.0 ng/mL. The evidence that CsV plays an important role in various anti-aging effects of GJG via suppression of TNF-⍺ expression is presented.

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Changpeng Wu ◽  
Mingxing Zhu ◽  
Zongliang Lu ◽  
Yaowen Zhang ◽  
Long Li ◽  
...  

Abstract Background Recent studies suggest potential benefits of applying L-carnitine in the treatment of cancer cachexia, but the precise mechanisms underlying these benefits remain unknown. This study was conducted to determine the mechanism by which L-carnitine reduces cancer cachexia. Methods C2C12 cells were differentiated into myotubes by growing them in DMEM for 24 h (hrs) and then changing the media to DMEM supplemented with 2% horse serum. Differentiated myotubes were treated for 2 h with TNF-α to establish a muscle atrophy cell model. After treated with L-carnitine, protein expression of MuRF1, MaFbx, FOXO3, p-FOXO3a, Akt, p-Akt, p70S6K and p-p70S6K was determined by Western blotting. Then siRNA-Akt was used to determine that L-carnitine ameliorated cancer cachexia via the Akt/FOXO3/MaFbx. In vivo, the cancer cachexia model was established by subcutaneously transplanting CT26 cells into the left flanks of the BALB/c nude mice. After treated with L-carnitine, serum levels of IL-1, IL-6 and TNF-α, and the skeletal muscle content of MuRF1, MaFbx, FOXO3, p-FOXO3a, Akt, p-Akt, p70S6K and p-p70S6K were measured. Results L-carnitine increased the gastrocnemius muscle (GM) weight in the CT26-bearing cachexia mouse model and the cross-sectional fiber area of the GM and myotube diameters of C2C12 cells treated with TNF-α. Additionally, L-carnitine reduced the protein expression of MuRF1, MaFbx and FOXO3a, and increased the p-FOXO3a level in vivo and in vitro. Inhibition of Akt, upstream of FOXO3a, reversed the effects of L-carnitine on the FOXO3a/MaFbx pathway and myotube diameters, without affecting FOXO3a/MuRF-1. In addition to regulating the ubiquitination of muscle proteins, L-carnitine also increased the levels of p-p70S6K and p70S6K, which are involved in protein synthesis. Akt inhibition did not reverse the effects of L-carnitine on p70S6K and p-p70S6K. Hence, L-carnitine ameliorated cancer cachexia via the Akt/FOXO3/MaFbx and p70S6K pathways. Moreover, L-carnitine reduced the serum levels of IL-1 and IL-6, factors known to induce cancer cachexia. However, there were minimal effects on TNF-α, another inducer of cachexia, in the in vivo model. Conclusion These results revealed a novel mechanism by which L-carnitine protects muscle cells and reduces inflammation related to cancer cachexia.


2013 ◽  
Vol 41 (05) ◽  
pp. 1109-1123 ◽  
Author(s):  
Hyo-Jin Lee ◽  
Yun-Jeong Jeong ◽  
Tae-Sung Lee ◽  
Yoon-Yub Park ◽  
Whi-Gun Chae ◽  
...  

In this study, we evaluated the anti-inflammatory effects of moringa (Moringa oleifera Lam.), a natural biologically active substance, by determining its inhibitory effects on pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated macrophage RAW264.7 cells. Extracts from different parts of moringa (root, leaf, and fruit) reduced LPS-induced nitric oxide (NO) release in a dose-dependent manner. The moringa fruit extract most effectively inhibited LPS-induced NO production and levels of inducible nitric oxide synthase (iNOS). The moringa fruit extract also was shown to suppress the production of inflammatory cytokines including IL-1β, TNF-α, and IL-6. Furthermore, moringa fruit extract inhibited the cytoplasmic degradation of I κ B -α and the nuclear translocation of p65 proteins, resulting in lower levels of NF -κ B transactivation. Collectively, the results of this study demonstrate that moringa fruit extract reduces the levels of pro-inflammatory mediators including NO , IL-1β, TNF-α, and IL-6 via the inhibition of NF -κ B activation in RAW264.7 cells. These findings reveal, in part, the molecular basis underlying the anti-inflammatory properties of moringa fruit extract.


Marine Drugs ◽  
2020 ◽  
Vol 18 (9) ◽  
pp. 480
Author(s):  
Weerawan Rod-in ◽  
Chaiwat Monmai ◽  
Il-sik Shin ◽  
SangGuan You ◽  
Woo Jung Park

Total lipids were extracted from sandfish (Arctoscopus japonicus), and then they were separated into the following three lipid fractions: neutral lipids, glycolipids, and phospholipids. In this study, we analyzed the lipid fractions of A. japonicus eggs and we determined their anti-inflammatory activity in RAW264.7 macrophage cells. In these three lipid-fractions, the main fatty acids were as follows: palmitic acid (16:0), oleic acid (18:1n-9), docosahexaenoic acid (DHA, 22:6n-3), and eicosapentaenoic acid (EPA, 20:5n-3). Among the lipid fractions, phospholipids showed the highest concentration of DHA and EPA (21.70 ± 1.92 and 18.96 ± 1.27, respectively). The three lipid fractions of A. japonicus significantly suppressed the production of NO in macrophages. Moreover, they also significantly inhibited the expression of iNOS, COX-2, IL-6, IL-1β, and TNF-α, in a dose-dependent manner. Furthermore, the lipid fractions of A. japonicus suppressed the nuclear translocation of NF-κB p65 subunits in a dose-dependent manner. In addition, they attenuated the activation of MAPKs (p38, ERK1/2, and JNK) phosphorylation in LPS-stimulated RAW264.7 cells. These results indicate that all the lipid fractions of A. japonicus exert anti-inflammatory activity by suppressing the activation of NF-κB and MAPK pathways. Therefore, the lipid fractions of A. japonicus might be potentially used as anti-inflammatory agents.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Shan Han ◽  
Hongwei Gao ◽  
Shaoru Chen ◽  
Qinqin Wang ◽  
Xinxing Li ◽  
...  

Abstract Inflammation is a complex physiological process that poses a serious threat to people’s health. However, the potential molecular mechanisms of inflammation are still not clear. Moreover, there is lack of effective anti-inflammatory drugs that meet the clinical requirement. Procyanidin A1 (PCA1) is a monomer component isolated from Procyanidin and shows various pharmacological activities. This study further demonstrated the regulatory role of PCA1 on lipopolysaccharide (LPS)-stimulated inflammatory response and oxidative stress in RAW264.7 cells. Our data showed that PCA1 dramatically attenuated the production of pro-inflammatory cytokines such as NO, iNOS, IL-6, and TNF-α in RAW264.7 cells administrated with LPS. PCA1 blocked IκB-α degradation, inhibited IKKα/β and IκBα phosphorylation, and suppressed nuclear translocation of p65 in RAW264.7 cells induced by LPS. PCA1 also suppressed the phosphorylation of JNK1/2, p38, and ERK1/2 in LPS-stimulated RAW264.7 cells. In addition, PCA1 increased the expression of HO-1, reduced the expression of Keap1, and promoted Nrf2 into the nuclear in LPS-stimulated RAW264.7 cells. Cellular thermal shift assay indicated that PCA1 bond to TLR4. Meanwhile, PCA1 inhibited the production of intracellular ROS and alleviated the depletion of mitochondrial membrane potential in vitro. Collectively, our data indicated that PCA1 exhibited a significant anti-inflammatory effect, suggesting that it is a potential agent for the treatment of inflammatory diseases.


2015 ◽  
Vol 43 (05) ◽  
pp. 969-989 ◽  
Author(s):  
Pei-Hsin Shie ◽  
Shyh-Shyun Huang ◽  
Jeng-Shyan Deng ◽  
Guan-Jhong Huang

Spiranthes sinensis is an east Asian wild orchid used in Chinese folk medicine. In this study, an ethyl acetate fraction from S. sinensis(SSE) was found to suppress the production of LPS-stimulated inflammatory mediators in RAW264.7 cells and BALB/c mice. SSE inhibited the production of pro-inflammatory mediators such as nitric oxide (NO), prostaglandin E2 (PGE2), tumo necrosis factor-α (TNF-α), IL-1β, and IL-6 in LPS-stimulated RAW264.7 cells. SSE also significantly suppressed LPS-stimulated protein levels of iNOS and mPGES-1 by blocking IκB phosphorylation, NF-κB nuclear translocation, and MAPKs phosphorylation. In addition, SSE treatment also enhanced protein levels of HO-1 and anti-oxidant enzymes (SOD-1, CAT, and GPx-1) through the nuclear translocation of Nrf2 in LPS-stimulated RAW264.7 cells. In vivo, we demonstrated that SSE attenuated the levels of pro-inflammatory mediators (NO, TNF-α, IL-1β, and IL-6), ALT, and AST in the serum of LPS-stimulated BALB/c mice. Western blotting revealed that SSE enhanced HO-1 expression in lung and liver tissue after LPS injection in mice. These results suggest that the anti-inflammatory properties of SSE involve the suppression of iNOS, mPGES-1, and inflammatory mediators by inducing the HO-1 pathway in LPS-stimulated RAW264.7 cells and BALB/c mice.


2013 ◽  
Vol 3 (6) ◽  
pp. 242 ◽  
Author(s):  
Tadahiro Etoh ◽  
Yong P. Kim ◽  
Masahiko Hayashi ◽  
Michiko Suzawa ◽  
Shiming Li ◽  
...  

Background: Formulated Citrus Peel Extract (GL) made from the peels of six citrus fruits available in Japan, namely navel oranges, citrus hassaku, citrus limon, citrus natsudaidai, citrus miyauchi and satsuma, was initially developed as a cosmetic product to protect skin from UV irradiation. Anecdotal evidences of anti-cancer property of GL have been reported by consumers based on the cases such as topical application for melanoma, and oral ingestion for prostate, lung and liver cancers. Those anecdotal reports stimulated us to investigate anti-tumorigenesis activity of GL. In the previous study, we reported that the topical application of GL inhibited DMBA/TPA-induced skin tumor formation by decreasing inflammatory gene parameters.Objective: In this study, we mainly investigated the effect of GL on translocation of NF-kB together with production of nitric-oxide and TNF-α induced by LPS in RAW 264.7 cells.Results: This investigation showed that GL decreased the release of TNF-α and nitric oxide from macrophage RAW264.7 cells stimulated by LPS in a dose-dependent manner. In addition, GL suppressed the expression of iNOS and nuclear translocation of NF-kB in RAW264.7 cells, inhibited the degradation of IκB-α, and scavenged hydroxyl radicals (DMPO/OH adduct) in vitro.Conclusions: Our findings suggest that GL suppresses the inflammation in vitro, and exerts chemopreventive activity through the inhibition of production of TNF-α and iNOS proteins due to the inhibition of nuclear translocation of NF-kB and oxidative stress. GL appears to be a novel functional natural product capable of preventing inflammation and inflammation-associated tumorigenesis. Keywords: GL, Citrus peel extract, anti-inflammation, Nitric oxide, iNOS, NF-kB, TNF-α


Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3573
Author(s):  
Lian-Chun Li ◽  
Zheng-Hong Pan ◽  
De-Sheng Ning ◽  
Yu-Xia Fu

Simonsinol is a natural sesqui-neolignan firstly isolated from the bark of Illicium simonsii. In this study, the anti-inflammatory activity of simonsinol was investigated with a lipopolysaccharide (LPS)-stimulated murine macrophages RAW264.7 cells model. The results demonstrated that simonsinol could antagonize the effect of LPS on morphological changes of RAW264.7 cells, and decrease the production of nitric oxide (NO), tumor necrosis factor α (TNF-α), and interleukin 6 (IL-6) in LPS-stimulated RAW264.7 cells, as determined by Griess assay and enzyme-linked immunosorbent assay (ELISA). Furthermore, simonsinol could downregulate transcription of inducible nitric oxide synthase (iNOS), TNF-α, and IL-6 as measured by reverse transcription polymerase chain reaction (RT-PCR), and inhibit phosphorylation of the alpha inhibitor of NF-κB (IκBα) as assayed by Western blot. In conclusion, these data demonstrate that simonsinol could inhibit inflammation response in LPS-stimulated RAW264.7 cells through the inactivation of the nuclear transcription factor kappa-B (NF-κB) signaling pathway.


Marine Drugs ◽  
2020 ◽  
Vol 19 (1) ◽  
pp. 1
Author(s):  
Peeraporn Varinthra ◽  
Shun-Ping Huang ◽  
Supin Chompoopong ◽  
Zhi-Hong Wen ◽  
Ingrid Y. Liu

Age-related macular degeneration (AMD) is a progressive eye disease that causes irreversible impairment of central vision, and effective treatment is not yet available. Extracellular accumulation of amyloid-beta (Aβ) in drusen that lie under the retinal pigment epithelium (RPE) has been reported as one of the early signs of AMD and was found in more than 60% of Alzheimer’s disease (AD) patients. Extracellular deposition of Aβ can induce the expression of inflammatory cytokines such as IL-1β, TNF-α, COX-2, and iNOS in RPE cells. Thus, finding a compound that can effectively reduce the inflammatory response may help the treatment of AMD. In this research, we investigated the anti-inflammatory effect of the coral-derived compound 4-(phenylsulfanyl) butan-2-one (4-PSB-2) on Aβ1-42 oligomer (oAβ1-42) added to the human adult retinal pigment epithelial cell line (ARPE-19). Our results demonstrated that 4-PSB-2 can decrease the elevated expressions of TNF-α, COX-2, and iNOS via NF-κB signaling in ARPE-19 cells treated with oAβ1-42 without causing any cytotoxicity or notable side effects. This study suggests that 4-PSB-2 is a promising drug candidate for attenuation of AMD.


2021 ◽  
Vol 22 (14) ◽  
pp. 7482
Author(s):  
Hwan Lee ◽  
Zhiming Liu ◽  
Chi-Su Yoon ◽  
Linsha Dong ◽  
Wonmin Ko ◽  
...  

Aging is associated with immune disregulation and oxidative stress which lead to inflammation and neurodegenerative diseases. We have tried to identify the anti-neuroinflammatory and anti-inflammatory components of Coreopsis lanceolata L. The dried flowers of C. lanceolata were extracted with 70% EtOH, and the obtained extract was divided into CH2Cl2, EtOAc, n-BuOH, and H2O fractions. The CH2Cl2 fraction was separated using silica gel and C-18 column chromatography to yield phenylheptatriyne (1), 2′-hydroxy-3,4,4′-trimethoxychalcone (2), and 4′,7-dimethoxyflavanone (3). Additionally, the EtOAc fraction was subjected to silica gel, C-18, and Sephadex LH-20 column chromatography to yield 8-methoxybutin (4) and leptosidin (5). All the compounds isolated from C. lanceolata inhibited the production of nitric oxide (NO) in LPS-induced BV2 and RAW264.7 cells. In addition, phenylheptatriyne and 4′,7-dimethoxyflavanone reduced the secretion of inflammatory cytokines, tumor necrosis factor alpha (TNF-α), and interleukin (IL)-6. Among them, phenylheptatriyne was significantly downregulated in the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). Subsequently, phenylheptatriyne also effectively inhibited nuclear factor-kappa B (NF-κB) activation in LPS-stimulated BV2 and RAW264.7 cells. Based on these results, the anti-neuroinflammatory effect of phenylheptatriyne isolated from C. lanceolata was confirmed, which may exert a therapeutic effect in treatment of neuroinflammation-related diseases.


2012 ◽  
Vol 209 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Anette Kocbach Bølling ◽  
Johan Ovrevik ◽  
Jan Tore Samuelsen ◽  
Jørn A. Holme ◽  
Kirsten E. Rakkestad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document