scholarly journals Integrative proteogenomic characterization of early esophageal cancer

Author(s):  
Lingling Li ◽  
Dongxian Jiang ◽  
Qiao Zhang ◽  
Hui Liu ◽  
Zhaoyu Qin ◽  
...  

Abstract We performed a comprehensive multi-omics analysis of 756 trace-tumor-samples from 124 esophageal squamous cell carcinoma phase (ESCC) patients, covering 9 histopathological stages in 3 phases as nontumor phase (NT phase), intraepithelial neoplasia phase (IEN phase), and ESCC phase. Proteogenomics elucidated the stage-specific molecular characterization and defined the cancer-driving waves along with the mutation accumulation in EC progression. The integrated multi-omics uncovered the chromosome 3q gain was the key event in the transmit from the NT to IEN phase, disclosed the top mutation of TP53 enhanced cell cycle and DNA replication in the IEN phase, and revealed the ESCC phase mutations of AKAP9 and MCAF1 elevated glycolysis and Wnt signaling, respectively. Furthermore, the trajectory analysis identified 6 major tracks related to different clinical features during ESCC progression. Growingly enhanced and hyperphosphorylated phosphoglycerate kinase 1 (PGK1, S203) was detected and considered as a drug target in ESCC progression. Collectively, this study provides insight into the understanding of ESCC molecular mechanism and a valuable resource for the development of therapeutic targets.

2021 ◽  
Author(s):  
Lingling Li ◽  
Dongxian Jiang ◽  
Qiao Zhang ◽  
Hui Liu ◽  
Zhaoyu Qin ◽  
...  

Abstract We performed a comprehensive genomic, proteomic, and phosphoproteomic analysis of 756 trace-tumor-samples from 124 esophageal cancer (EC) patients, covering 9 major histopathological stages and 22 substages. The results revealed a significant diversity of proteome patterns in the 22 substages. The integrated multi-omics data identified genomic-proteomic aberrations revealing the association of TP53, ATM, and EP400 mutations that affected cell cycle, DNA repair, and glycolysis, with poor prognosis. Proteome-based analysis elucidated the stage-specific molecular characterization and defined the cancer-driving waves along with the mutation accumulation in esophageal carcinogenesis and progression. Furthermore, the trajectory analysis identified 6 major tracks related to different clinical features during early EC progression. Growingly enhanced and hyperphosphorylated phosphoglycerate kinase 1 (PGK1, S203) was detected and considered as a drug target in EC progression. Collectively, this study provides insight into the understanding of the molecular mechanism of EC progression and a valuable resource for the development of therapeutic targets.


Author(s):  
D. F. Blake ◽  
L. F. Allard ◽  
D. R. Peacor

Echinodermata is a phylum of marine invertebrates which has been extant since Cambrian time (c.a. 500 m.y. before the present). Modern examples of echinoderms include sea urchins, sea stars, and sea lilies (crinoids). The endoskeletons of echinoderms are composed of plates or ossicles (Fig. 1) which are with few exceptions, porous, single crystals of high-magnesian calcite. Despite their single crystal nature, fracture surfaces do not exhibit the near-perfect {10.4} cleavage characteristic of inorganic calcite. This paradoxical mix of biogenic and inorganic features has prompted much recent work on echinoderm skeletal crystallography. Furthermore, fossil echinoderm hard parts comprise a volumetrically significant portion of some marine limestones sequences. The ultrastructural and microchemical characterization of modern skeletal material should lend insight into: 1). The nature of the biogenic processes involved, for example, the relationship of Mg heterogeneity to morphological and structural features in modern echinoderm material, and 2). The nature of the diagenetic changes undergone by their ancient, fossilized counterparts. In this study, high resolution TEM (HRTEM), high voltage TEM (HVTEM), and STEM microanalysis are used to characterize tha ultrastructural and microchemical composition of skeletal elements of the modern crinoid Neocrinus blakei.


2018 ◽  
Vol 69 (10) ◽  
pp. 2889-2894
Author(s):  
Ion Virgil Corlan ◽  
Adelina Cheveresan ◽  
Delia Berceanu Vaduva ◽  
Cristian Nica ◽  
Alin Faur ◽  
...  

The present study was aimed to evaluate the confluence percentage of three oral cell lines, namely primary gingival keratinocytes (PGK), primary gingival fibroblasts (HGF) and tongue squamous cell carcinoma (SCC-4). All cells have been monitored at different passages for 21 days. Evaluation of confluence percentage reveals the fact that primary gingival keratinocytes and tongue squamous cell carcinoma at small passages requires a period of about two weeks to reach a confluence of approximately 80% while for the gingival fibroblasts a period of about three times smaller is satisfactory.


2020 ◽  
Vol 26 ◽  
Author(s):  
Jia Zhang ◽  
Wei Mao ◽  
Yuying Liu ◽  
Jian Ding ◽  
Jie Wang ◽  
...  

Background: Hypopharyngeal carcinoma is characterized by high degree of malignancy. The most common pathological type is squamous cell carcinoma (HSCC). Cisplatin (cis-diamminedichloroplatinum, CDDP) is one of the most widely used chemotherapeutic drugs nowadays and cisplatin resistance is a major problem in current treatment strategies. Clinical researches have reported that high autophagy level often caused insensitivity to chemotherapy, a common phenomenon that greatly reduces therapeutic effect in cisplatin-resistant tumor cell lines. 3-methyladenine (3-MA), an inhibitor of PI3K, plays a vital role in the formation and development of autophagosomes. Therefore, we speculate that the use of 3-MA may reduce cisplatin resistance in hypopharyngeal squamous cell carcinoma (HSCC). Methods: Part I: Cisplatin-resistant FaDu cell line (Human hypopharyngeal squamous cell carcinoma cells) was established and cultured. Cell counting kit-8 was used to detect drug resistance. Inverted microscope was used to observe the morphological changes at different concentrations, then the survival rate was calculated. After MDC staining, the autophagic vacuoles were observed by fluorescence microscopy. The expression of Beclin1 from each group was confirmed by RTPCR and Western blot method. Part II: 3-MA was applied for cisplatin-resistant cells intervention, Beclin1 was knocked down by plasmid transfection. Cell cycle was detected using flow cytometry assay, apoptosis with necrosis was detected by staining with propidium iodide (PI). CCK-8 was used to observe the cell survival rate in each group. The expression of autophagy-related protein Beclin1, LC3I, LC3II, Atg-5 and P62 in each group was verified by Western blot analysis. Results: Cisplatin-resistant FaDu cell line can be stably constructed by cisplatin intervention. Compared with normal group, autophagy and its related protein Beclin1 expression was enhanced in cisplatin resistant FaDu cells. Autophagy inhibition group showed significant cell cycle changes, mainly manifested by G1 arrest, increased apoptosis rate and significantly decreased survival rate at 24h level. The number of autophagy vacuoles were significantly reduced in the 3-MA group. Furthermore, Western blot showed that expression of Beclin1, lc3-I, lc3-II, atg-5 protein decreased significantly after 3-MA intervention, while the expression of p62 up-regulated, which also confirmed autophagy flow was blocked. Conclusion: Our work confirmed that enhanced autophagy is an important cause of cisplatin resistance in FaDu cells. The use of 3-MA can significantly reduce autophagy level and arresting its cell cycle, promote apoptosis and reverse the cisplatin resistance condition, this effect is partly mediated by inhibition of Beclin-1 expression. Our data provides a theoretical basis for the application of 3-MA in overcoming cisplatin resistance in hypopharyngeal cancer.


2019 ◽  
Vol 19 (2) ◽  
pp. 248-255 ◽  
Author(s):  
Ling Gao ◽  
Jianwei Dong ◽  
Nanyang Zhang ◽  
Zhanxian Le ◽  
Wenhao Ren ◽  
...  

Background:The Oral Squamous Cell Carcinoma (OSCC) is one of the most frequent cancer types. Failure of treatment of OSCC is potentially lethal because of local recurrence, regional lymph node metastasis, and distant metastasis. Chemotherapy plays a vital role through suppression of tumorigenesis. Cyclosporine A (CsA), an immunosuppressant drug, has been efficiently used in allograft organ transplant recipients to prevent rejection, and also has been used in a subset of patients with autoimmunity related disorders. The present study aims to investigate novel and effective chemotherapeutic drugs to overcome drug-resistance in the treatment of OSCC.Methods:Cells were incubated in the standard way. Cell viability was assayed using the MTT assay. Cell proliferation was determined using colony formation assay. The cell cycle assay was performed using flow cytometry. Apoptosis was assessed using fluorescence-activated cell sorting after stained by the Annexin V-fluorescein isothiocyanate (FITC). Cell migration and invasion were analyzed using wound healing assay and tranwell. The effect of COX-2, c-Myc, MMP-9, MMP-2, and NFATc1 protein expression was determined using Western blot analysis while NFATc1 mRNA expression was determined by RT-PCR.Results:In vitro studies indicated that CsA inhibited partial OSCC growth by inducing cell cycle arrest, apoptosis, and the migration and invasion of OSCC cells. We also demonstrated that CsA could inhibit the expression of NFATc1 and its downstream genes COX-2, c-Myc, MMP-9, and MMP-2 in OSCC cells. Furthermore, we analyzed the expression of NFATc1 in head and neck cancer through the Oncomine database. The data was consistent with the experimental findings.Conclusion:The present study initially demonstrated that CsA could inhibit the progression of OSCC cells and can mediate the signal molecules of NFATc1 signaling pathway, which has strong relationship with cancer development. That explains us CsA has potential to explore the possibilities as a novel chemotherapeutic drug for the treatment of OSCC.


Dose-Response ◽  
2020 ◽  
Vol 18 (2) ◽  
pp. 155932582092868 ◽  
Author(s):  
Qingjie Xian ◽  
Ronglei Zhao ◽  
Juanjuan Fu

Increasing evidence indicated that microRNAs served dominant roles in carcinogenesis and cancer progression by targeting potential downstream genes. In our study, we found that miR-527 was an upregulated expression in human esophageal squamous cell carcinoma (ESCC) cells and tissues. Furthermore, overexpression of miR-527 promoted cell proliferation and colony formation, enhanced anchorage-independent growth ability, and contributed to cell cycle. In addition, protein phosphatase 2 (PHLPP2) was identified as the direct downstream target gene of miR-527 and was confirmed by luciferase gene reporter assay. In summary, we concluded that miR-527 acted as an oncogenic microRNA in ESCC development by directly targeting PHLPP2 might be a novel therapeutic target for the treatment of ESCC.


Sign in / Sign up

Export Citation Format

Share Document