Influence of Feeding and Organism Age on the Acute Toxicity of Sodium Bromide to Artemia salina

Author(s):  
David Pillard ◽  
Kelly Tapp

Abstract Bromide is a common ion found in freshwater and marine systems. Although normally at relatively low concentrations, higher levels may occur in point-released wastewaters as well as nonpoint runoff from agricultural or industrial locations where bromide compounds are used as biocides and disinfectants. In this study, the potential toxicity of NaBr in a saltwater environment was studied using the brine shrimp, Artemia salina. The confounding factors of organism age at test initiation and pre-test feeding were included in the test design. Survival of brine shrimp nauplii in several NaBr treatments up to 11,000 mg Br−/L (measured) was assessed after 24 h in both fed- and unfed-tests. In tests with unfed organisms, only the youngest (< 24 h old) nauplii had acceptable control survival (≥90%), while control survival for all of the tests with fed organisms (< 24 h old, < 48 h old, < 72 h old) was acceptable. There was also greater and more erratic mortality in the unfed tests. These data indicate feeding A. salina prior to initiating a short-term acute test improved performance. Not feeding the test organisms, especially in longer tests or when using > 24 h old organisms, may result in excessive control mortality and an invalid test. These studies show that, when healthy organisms are used in the toxicity tests, 11,000 mg/L of Br− (~ 14,200 mg/L NaBr) is not acutely toxic to Artemia salina.

2021 ◽  
Vol 9 (1) ◽  
pp. 10-17
Author(s):  
Nofita Nofita ◽  
◽  
Ade Maria Ulfa ◽  
Miera Delima ◽  
◽  
...  

ABSTRACTGuava is one of the plants that can traditionally be used for the treatment of diseases. Many kinds of guava, one of which is the Australian guava has the characteristics of roots, stems, leaves, dark red fruit. This study aims to determine the toxicity of the ethanol extract of Australian guava leaves (Psidium guajava L) using the BSLT (Brine Shrimp Lethality Test) method and determine the chemical content of Australian guava leaves (Psidium guajava L). The extract was made by the ultrasonic method using 96% ethanol solvent. Toxicity tests were carried out using 48-hour-old Artemia salina Leach shrimp larvae. The toxic effect of the extract was identified by the percentage of shrimp larvae mortality using probit analysis (LC50). From the research results, phytochemical content includes tannins, flavonoids, alkaloids, terpenoids and saponins, and flavonoid compounds have the highest content compared to the others. Research shows that the ethanol extract of Australian guava leaves is of a moderate category (LC50 441,977 ppm).Keywords :Australia guava leaves, BSLT, Artemia salina L, Ultrasonic


Author(s):  
Gustini Syahbirin ◽  
Nurfadilawati Mumuh ◽  
Kusdiantoro Mohamad

Objective: This study was aimed at determining the levels of curcuminoids and analyzing the toxicity of ethanol extracts of Javanese ginger.Methods: Curcuminoid levels were determined using high-performance liquid chromatography, while the toxicity tests were done on larva of brine shrimp (Artemia salina) by using a brine shrimp lethality test (BSLT) method and embryos of zebrafish (Danio rerio) using a zebrafish embryo acute toxicity (ZFET) method.Results: The level curcuminoid of ethanol extracts was 10.5% dry wt., consisting of curcumin at the highest percentage (68.06%) followed bydesmethoxycurcumin (24.6%) and bisdemethoxycurcumin (1.41%). In BSLT method, the lethal concentration 50% values (LC) value of our ethanol extract was 238 ppm, whereas in ZFET method, the LC value at 96 hours after fertilization was 80 ppm. The ethanol extract of ginger caused major malformations of the pericardial edema of zebrafish embryos at a concentration of 100 ppm. 50Conclusion: The ethanol extract of Curcuma xanthorrhiza from Bogor contained curcuminoids consisting of curcumin, desmethoxycurcumin, and bisdemethoxycurcumin, with acute toxicity, caused major malformations on the pericardial edema in zebrafish embryos.Keywords: Curcuma xanthorrhiza, Curcuminoid, Toxicity, Zebrafish embryo acute toxicity.50


2016 ◽  
Vol 64 (3) ◽  
Author(s):  
Carmita Jaramillo-Jaramillo ◽  
Anyi Jaramillo-Espinoza ◽  
Haydelba D’Armas ◽  
Luis Troccoli ◽  
Luisa Rojas de Astudillo

Alkaloids, polyphenols, cyanogenic glycosides and saponins are among the main chemical compounds synthesized by plants but not considered essential for their basic metabolism. These compounds have different functions in plants, and have been recognized with medicinal and pharmacological properties. In this research, concentrations of the mentioned secondary metabolites were determined in the medicinal plants Artemisia absinthium, Cnidoscolus aconitifolius, Parthenium hysterophorus, Piper carpunya and Taraxacum officinale, from Ecuador, and related with cytotoxic effects against Artemia salina. Alcoholic and aqueous extracts from leaves of these selected plants were prepared at different concentrations. To assess cytotoxicity of these extracts, different bioassays with A. salina were undertaken, and the mortality rates and LC50 were obtained. Besides, concentrations of alkaloids, cyanogenic glycosides, phenols, tannins and saponins were determined by spectrophotometric methods; this constituted the first report of quantification of secondary metabolites in the selected plants from Ecuador. T. officinale had the highest concentration of total phenols (22.30 ± 0.23 mg/g) and tannins (11.70 ± 0.10 mg/g), C. aconitifolius of cyanogenic glycosides (5.02 ± 0.37 µg/g) and P. hysterophorus of saponins (6.12 ± 0.02 mg/g). Tannins values obtained were not adverse to their consumption. Alcoholic and aqueous extracts of selected plants had hemolytic activity depending on the concentration of saponins. Although the values of cyanogenic glycosides were permissible, it was necessary to monitor the presence of this metabolite in plants to minimize health problems. LC50 values ranged from extremely toxic (3.37 µg/mL) to highly toxic (274.34 μg/mL), in P. carpunya and T. officinale, respectively. From correlation analysis, it was observed that increase values of alkaloids concentrations had highly significant (p<0.001) acute toxicity against A. salina, while at a higher polyphenol concentration the level of plants cytotoxicity decreased significantly (p<0.001). The results of principal component analysis showed that saponins apparently were in synergy with polyphenols to decrease cytotoxicity, but antagonize with alkaloids and cyanogenic glycosides, indicating that these secondary metabolites present variability in the mechanisms of action against A. salina, as cytotoxic compounds. These results also demonstrate that polyphenols and saponins can be lethal at low concentrations, demonstrating the potential of brine shrimp bioassay as a model to evaluate plant extracts containing low concentrations of chemical compounds with high polarities. The significant positive correlation between cytotoxicity and concentration of alkaloids confirmed by the bioassay of brine shrimp can be useful to identify promising sources of antitumor compounds, and to evaluate tolerable limits not affecting other benign cells. Contents of secondary metabolites found in the selected plants confer them great pharmacologic values.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Robin Mesnage ◽  
Maxime Teixeira ◽  
Daniele Mandrioli ◽  
Laura Falcioni ◽  
Mariam Ibragim ◽  
...  

AbstractHealth effects of pesticides are not always accurately detected using the current battery of regulatory toxicity tests. We compared standard histopathology and serum biochemistry measures and multi-omics analyses in a subchronic toxicity test of a mixture of six pesticides frequently detected in foodstuffs (azoxystrobin, boscalid, chlorpyrifos, glyphosate, imidacloprid and thiabendazole) in Sprague-Dawley rats. Analysis of water and feed consumption, body weight, histopathology and serum biochemistry showed little effect. Contrastingly, serum and caecum metabolomics revealed that nicotinamide and tryptophan metabolism were affected, which suggested activation of an oxidative stress response. This was not reflected by gut microbial community composition changes evaluated by shotgun metagenomics. Transcriptomics of the liver showed that 257 genes had their expression changed. Gene functions affected included the regulation of response to steroid hormones and the activation of stress response pathways. Genome-wide DNA methylation analysis of the same liver samples showed that 4,255 CpG sites were differentially methylated. Overall, we demonstrated that in-depth molecular profiling in laboratory animals exposed to low concentrations of pesticides allows the detection of metabolic perturbations that would remain undetected by standard regulatory biochemical measures and which could thus improve the predictability of health risks from exposure to chemical pollutants.


1974 ◽  
Vol 52 (3) ◽  
pp. 231-240 ◽  
Author(s):  
A. H. Warner ◽  
P. C. Beers ◽  
F. L. Huang

An enzyme that catalyzes the synthesis of P1P4-diguanosine 5′-tetraphosphate (Gp4G) has been isolated and purified from yolk platelets of encysted embryos of the brine shrimp, Artemia salina. The enzyme GTP:GTP guanylyltransferase (Gp4G synthetase) utilizes GTP as substrate, has a pH optimum of 5.9–6.0, a temperature optimum of 40–42 °C, and requires Mg2+ and dithiothreitol for optimal activity. The synthesis of Gp4G is inhibited markedly by pyrophosphate, whereas orthophosphate has no effect on the reaction. In the presence of GDP the enzyme also catalyzes the synthesis of P1,P3-diguanosine 5′-triphosphate (Gp3G), but the rate of synthesis is low compared with Gp4G synthesis and dependent upon other small molecular weight components of yolk platelets.


1973 ◽  
Vol 58 (3) ◽  
pp. 643-649 ◽  
Author(s):  
H. Schmitt ◽  
H. Grossfeld ◽  
U. Z. Littauer

Mitochondria isolated from cysts of Artemia salina (brine shrimp) were found to be devoid of cristae and to possess a low respiratory capability. Hydration of the cysts induces marked biochemical and morphological changes in the mitochondria. Their biogenesis proceeds in two stages. The first stage is completed within 1 h and is characterized by a rapid increase in the respiratory capability of the mitochondria, their cytochrome oxidase, cytochrome b, cytochrome c and perhaps some morphological changes. In the second stage there is an increase in the protein-synthesizing capacity of the mitochondria as well as striking changes in mitochondrial morphology leading to the formation of cristae.


2021 ◽  
Vol 14 (4) ◽  
pp. 702-716
Author(s):  
Thaiz Batista Azevedo Rangel Miguel ◽  
Elaine Cristina Maciel Porto ◽  
Sergimar Kennedy de Paiva Pinheiro ◽  
Emilio de Castro Miguel ◽  
Fabiano André Narciso Fernandes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document