scholarly journals Properties Investigation of Epoxidized Sunflower Oil as Bioplasticizer for Poly (Lactic Acid)

Author(s):  
Mohamed BOUTI ◽  
Ratiba IRINISLIMANE ◽  
Naima Belhaneche-Bensemra

Abstract This study aims to improve the ductility of poly (lactic acid) (PLA). For that purpose, bioblends based on PLA and epoxidized vegetable oils (EVO) as bioplasticizers were prepared. Commercial sunflower oil was epoxidized and epoxidized sunflower oil (ESO) was used as plasticizer for PLA. To investigate ESO potential as plasticizer for PLA, its plasticizing effect was compared with commercial epoxidized soya bean oil (ESBO). The plasticizers (ESO or ESBO) were respectively compounded with PLA at 10, 20, 30, and 40 wt%. Mechanical (tensile and Shore D hardness), thermal (differential scanning calorimetry (DSC), thermogravimetric analysis (TGA)) and morphological properties (optical microscopy and scanning electron microscopy (SEM)) were characterized. The results showed that the addition of ESO or ESBO to PLA decreased tensile strength and tensile modulus compared to neat PLA but increased elongation at break for which an optimum (9.02%, 15.55% and 33.67% for ESBO, ESO5.5% and ESO6.5% respectively) was reached at a content of 20 wt% of plasticizer. The structures of the obtained plasticized PLA were confirmed by FTIR spectroscopy. DSC showed a clear decrease in the glass transition temperature of PLA and SEM analysis proved successful modification on the PLA brittle morphology with addition of EVO. On the other hand, TGA results revealed significant increase in the thermal stability. Based on the results of this study, ESO exhibited promising results regarding

2014 ◽  
Vol 970 ◽  
pp. 312-316
Author(s):  
Sujaree Tachaphiboonsap ◽  
Kasama Jarukumjorn

Thermoplastic starch (TPS)/poly (lactic acid) (PLA) blend and thermoplastic starch (TPS)/poly (lactic acid) (PLA)/poly (butylene adipate-co-terephthalate) (PBAT) blend were prepared by melt blending method. PLA grafted with maleic anhydride (PLA-g-MA) was used as a compatibilizer to improve the compatibility of the blends. As TPS was incorporated into PLA, elongation at break was increased while tensile strength, tensile modulus, and impact strength were decreased. Tensile properties and impact properties of TPS/PLA blend were improved with adding PLA-g-MA indicating the enhancement of interfacial adhesion between PLA and TPS. With increasing PBAT content, elongation at break and impact strength of TPS/PLA blends were improved. The addition of TPS decreased glass transition temperature (Tg), crystallization temperature (Tc), and melting temperature (Tm) of PLA. Tgand Tcof TPS/PLA blend were decreased by incorporating PLA-g-MA. However, the presence of PBAT reduced Tcof TPS/PLA blend. Thermal properties of TPS/PLA/PBAT blends did not change with increasing PBAT content. SEM micrographs revealed that the compatibilized TPS/PLA blends exhibited finer morphology when compared to the uncompatibilized TPS/PLA blend.


2014 ◽  
Vol 970 ◽  
pp. 74-78 ◽  
Author(s):  
Jiraporn Nomai ◽  
Kasama Jarukumjorn

Sawdust/poly (lactic acid) (PLA) composites toughened with poly (butylene adipate-co-terephthalate) (PBAT) were prepared using a melt blending process. Mechanical, thermal and morphological properties of the composites were investigated. With the addition of PBAT into the sawdust/PLA composite, elongation at break and impact strength increased whereas tensile strength and tensile modulus decreased. In addition, thermal stability of the PLA composite improved with the presence of PBAT. Maleic anhydride grafted poly (lactic acid) (PLA-g-MA) was used as a compatibilizer to improve the compatibility of sawdust/PLA/PBAT composites. The compatibilized composites showed higher mechanical properties and thermal decomposition temperatures than that of the uncompatibilized composite due to improved interfacial adhesion between constituents of the composites. The optimum content of PLA-g-MA for sawdust/PLA/PBAT composites was 5 wt%. SEM micrographs revealed some features of ductile fracture in the composites toughened with PBAT and confirmed that PLA-g-MA improved the compatibility of the composites.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Wei Kit Chee ◽  
Nor Azowa Ibrahim ◽  
Norhazlin Zainuddin ◽  
Mohd Faizal Abd Rahman ◽  
Buong Woei Chieng

Poly(lactic acid) (PLA)/poly(ε-caprolactone) (PCL) blends were prepared via melt blending technique. Glycidyl methacrylate (GMA) was added as reactive compatibilizer to improve the interfacial adhesion between immiscible phases of PLA and PCL matrices. Tensile test revealed that optimum in elongation at break of approximately 327% achieved when GMA loading was up to 3wt%. Slight drop in tensile strength and tensile modulus at optimum ratio suggested that the blends were tuned to be deformable. Flexural studies showed slight drop in flexural strength and modulus when GMA wt% increases as a result of improved flexibility by finer dispersion of PCL in PLA matrix. Besides, incorporation of GMA in the blends remarkably improved the impact strength. Highest impact strength was achieved (160% compared to pure PLA/PCL blend) when GMA loading was up to 3 wt%. SEM analysis revealed improved interfacial adhesion between PLA/PCL blends in the presence of GMA. Finer dispersion and smooth surface of the specimens were noted as GMA loading increases, indicating that addition of GMA eventually improved the interfacial compatibility of the nonmiscible blend.


2019 ◽  
Vol 33 (10) ◽  
pp. 1383-1395
Author(s):  
Hongjuan Zheng ◽  
Zhengqian Sun ◽  
Hongjuan Zhang

Poly(lactic acid) (PLA) has good environmental compatibility, however, its high brittleness, slow rate of crystallization, and low heat distortion temperature restrict its widespread use. To overcome these limitations, in this study, PLA was mixed with walnut shell (WS) powders. The effects of WS powders on the morphology and the thermal and mechanical properties of PLA were investigated. The products were characterized by differential scanning calorimetry (DSC), infrared (IR) spectroscopy, polarizing optical microscopy (POM), and various mechanical property testing techniques. The results showed that WS powders had a significant effect on the morphology and the thermal and mechanical properties of PLA. The tensile strength, impact strength, and elongation at break of the PLA/WS composites first increased and then decreased with the increasing addition of WS powders. When the addition of WS powders was about 0.5 wt%, they reached maximum values of 51.2 MPa, 23.3 MPa, and 19.0%, respectively. Compared with neat PLA, the spherulite grain size of the composites could be reduced and many irregular polygons were formed during crystallization. The melting, cold crystallization, and glass-transition temperatures of the composites were lower than those of neat PLA.


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 39-54 ◽  
Author(s):  
Bo Wang ◽  
Yujuan Jin ◽  
Kai’er Kang ◽  
Nan Yang ◽  
Yunxuan Weng ◽  
...  

AbstractIn this study, a type of epoxy-terminated branched polymer (ETBP) was used as an interface compati- bilizer to modify the poly lactic acid (PLA)/poly(butylene adipate-co-butylene terephthalate) (PBAT) (70/30) blends. Upon addition of ETBP, the difference in glass transition temperature between PLA and PBAT became smaller. By adding 3.0 phr of ETBP, the elongation at break of the PLA/PBAT blends was found increased from 45.8% to 272.0%; the impact strength increased from 26.2 kJ·m−2 to 45.3 kJ·m−2. In SEM analysis, it was observed that the size of the dispersed PBAT particle decreased with the increasing of ETBP content. These results indicated that the compatibility between PLA and PBAT can be effectively enhanced by using ETBP as the modifier. The modification mechanism was discussed in detail. It proposes that both physical and chemical micro-crosslinking were formed, the latter of which was confirmed by gel content analysis.


2014 ◽  
Vol 1024 ◽  
pp. 136-139 ◽  
Author(s):  
Buong Woei Chieng ◽  
Ibrahim Nor Azowa ◽  
Wan Yunus Wan Md Zin ◽  
Mohd Zobir Hussein

Graphene nanoplatelets (xGnP) were investigated as a novel nanoreinforcement filler in poly (lactic acid)(PLA)/poly (ethylene glycol)(PEG) blends by melt blending method. The prepared nanocomposites exhibited a significant improvement in tensile properties at a low xGnP loading. The tensile properties demonstrated the addition of 0.3wt% of xGnP led to an increase of up to 32.7%, 69.5% and 21.9% in tensile strength, tensile modulus and elongation at break of the nanocomposites respectively, compared to PLA/PEG blend. The nanocomposites also shows enhanced thermal stability compared with PLA/PEG blend in thermogravimetry analysis (TGA). Scanning electron microscopy (SEM) image of PLA/PEG/0.3wt% xGnP displays good uniformity and more homogenous morphology.


2014 ◽  
Vol 11 (2) ◽  
pp. 57 ◽  
Author(s):  
Buong Woei Chieng ◽  
Nor Azowa Ibrahim ◽  
Wan Md Zin Wan Yunus ◽  
Mohd Zobir Hussein

Poly(lactic acid) (PLA)-based nanocomposites filled with graphene nanoplatelets (xGnP) that contains epoxidized palm oil (EPO) as plasticizer were prepared by melt blending method. PLA was first plasticized by EPO to improve its flexibility and thereby overcome its problem of brittleness. Then, xGnP was incoporated into plasticized PLA to enhance its mechanical properties. Plasticized and nanofilled PLA nanocomposites (PLA/EPO/xGnP) showed improvement in the elongation at break by 3322% and 61% compared to pristine PLA and PLA/EPO, respectively. The use of EPO and xGnP increases the mobility of the polymeric chains, thereby improving the flexibility and plastic deformation of PLA. The nanocomposites also resulted in an increase of up to 26.5% in the tensile strength compared with PLA/EPO blend. XRD pattern showed the presence of peak around 26.5° in PLA/EPO/xGnP nanocomposites which corresponds to characteristic peak of graphene nanoplatelets. Plasticized PLA reinforced with xGnP showed that increasing the xGnP content triggers a substantial increase in thermal stability. Crystallinity of the nanocomposites as well as cold crystallization and melting temperature did not show any significant changes upon addition of xGnP. However, there was a significant decrease of glass transition temperature up to 0.3wt% of xGnP incorporation. The TEM micrograph of PLA/EPO/xGnP shows that the xGnP was uniformly dispersed in the PLA matrix and no obvious aggregation was observed.


Author(s):  
Tatyana Ageyeva ◽  
József Gábor Kovács ◽  
Tamás Tábi

AbstractWe selected the thirteen most effective nucleating agents for Poly(lactic acid) (PLA) from the literature, and synthesized and compounded them with two different PLA grades: 3001D (1.4% D-lactide content) and 3100HP (0.5% D-lactide content, considered PLLA). We determined the crystallinity and crystallization of PLA with different nucleating agents in identical conditions (same nucleating agent content, same cooling rate) with the help of differential scanning calorimetry. We compared the efficiency of each nucleating agent and found that for both PLA grades, Zinc PhenylPhosphonate was the most effective. However, even when nucleated PLA was injection molded into a cold mold (25 °C), it still could not fully crystallize during cooling and the heat deflection temperature did not increase significantly. The maximum achieved crystallinity, in this case, was between 32.4 and 35.7%. On the contrary, when a 90 °C “hot mold” and in-mold crystallization together were applied, the specimens achieved full crystallization during the injection molding cycle (crystallinity was between 44.5 and 50.0%), and the heat deflection temperature increased to an average of 88.8 °C. We also examined the mechanical properties of the nucleated PLA and found that the usage of nucleating agents together with a hot mold improved tensile strength, tensile modulus, and Charpy impact strength but decreased elongation at break.


2021 ◽  
Vol 945 (1) ◽  
pp. 012064
Author(s):  
Tan Wuan Chien ◽  
Mathialagan Muniyadi ◽  
Yamuna Munusamy

Abstract The saturation point of Mimusop elengi seed shell powder (MESSP) and the effect of MESSP addition on the mechanical, thermal, water absorption and morphological properties of polypropylene (PP) composites were studied. Tensile fracture, physio-mechanical properties and thermal behavior of composites were characterized using tensile and impact testing, thermogravimetric analysis, scanning electron micrograph, and differential scanning calorimetry. Processability of composites were feasible up to 20 wt. % MESSP by which agglomeration of MESSP and poor dispersion of MESSP in PP was observed above 20 wt% MESSP loading. Increasing MESSP loading showed tremendous improvement in tensile modulus and impact strength, whereas tensile strength and elongation at break were reduced. Water absorption and thermal decomposition of composites remain comparable with addition of MESSP up to 20 wt. %. Reduction of tensile strength was attributed by weak adhesion between MESSP and PP. However, morphological analysis revealed the presence of physical interaction via PP chain interlocking on MESSP surface.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Hsien-Tang Chiu ◽  
Szu-Yuan Huang ◽  
Yan-Fu Chen ◽  
Ming-Tai Kuo ◽  
Tzong-Yiing Chiang ◽  
...  

In this study the relationships between mechanicals properties and morphology of the poly (lactic acid) (PLA)/poly (butylene adipate-co-terephthalate) (PBAT) blends with or without heat treatment were investigated. The differential scanning calorimetry (DSC) analysis showed that blends have a two-phase structure indicating that they are immiscible. On the other hand, the PLA/PBAT (30/70) blend achieved the best tensile and impact strength because of its sea-island morphology, except for high PBAT content. The PLA/PBAT (70/30) and PLA/PBAT (50/50) blends showed irregular and directive-layer morphologies, in scanning electron microscopy (SEM) analysis, producing a break cross-section with various fiber shapes. Both blends showed lower tensile strength and impact strength than the PLA/PBAT (30/70). After heat treatment, the PLA/PBAT blends showed high modulus of tensile and HDT because of a high degree of crystallization. The high degree of crystallization in the blends, which originated in the heat treatment, reduced their impact strength and elongation. However, the effect of high degree of crystallization on the PLA/PBAT (30/70) blend was small because of its sea-island morphology.


Sign in / Sign up

Export Citation Format

Share Document