scholarly journals Network Pharmacology and Component Analysis Integrated Study to Unveil Molecular Mechanisms of A Traditional Chinese Medicine Decoction (Polygonum Multiflorum, Rehmannia Glutinosa, Senna Obtusifolia and Crataegus) in Hypertension Treatment

2020 ◽  
Author(s):  
Fui Fui Lem ◽  
Fernandes Opook ◽  
Fahcina P. Lawson ◽  
Thau Lym Wilson Yong ◽  
Fong Tyng Chee

Abstract Background: Traditional Chinese Medicines (TCM) are known for their curative effects on hypertension through a holistic approach. The molecular mechanisms of the formulation comprising Polygonum multiflorum, Rehmannia glutinosa, Senna obtusifolia and Crataegus, used by Chinese practitioners in ameliorating hypertension, however remain a mystery. This initial study is thus aimed at unveiling the molecular mechanisms of this TCM formulation in treating hypertension. Methods: The methanolic extract compounds of the decoction were identified through Liquid chromatography mass spectrometry-mass spectrometry (LC-MS/MS). Oral bioavailability and drug likeness were then measured to filter out identified compounds. Several databases, such as the SwissTargetPrediction, STRING, OMIM and KEGG, were used to retrieve information on the predicted targets for the purpose of developing a network using Cytoscape Version 3.8. Enrichment analysis was then performed to elucidate the mechanisms of the decoction in hypertension mitigation. Results: A total of 11 compounds identified were revealed to possess bioavailable and drug like characteristics, based on the Veber and Quantitative Estimation of Drug-likeness (QED) parameters. Pathway analysis showed enrichment of pathways such as cardiac muscle contraction, fluid shear stress and atherosclerosis, dilated cardiomyopathy, renin-angiotensin system and hypertrophic cardiomyopathy (HCM), which are all strongly associated with hypertension. Conclusion: The network pharmacology analysis clearly shows that this TCM decoction ameliorates hypertension through several indirect pathways where most of the targets are involved in HCM, which is caused by hypertension.

2020 ◽  
Author(s):  
Lianzhou Huang ◽  
Zexiu Huang ◽  
Yuanqiu Chen ◽  
Xin Jin ◽  
Ji Xiao ◽  
...  

Abstract BackgroundHesperetin, an active ingredient derived from Citrus × aurantium L., possesses a wide range of biological activities, including anti-inflammatory, anti-oxidation, and anti-cancer activity. Notably, hesperetin has been proposed as a candidate for atherosclerosis owing to the lipid-regulating and anti-inflammatory effect, while the underlying mechanisms remains obscure.ResultsIn our present study, the pharmacological and molecular properties of hesperetin were first evaluated to determine the druggability of hesperetin. Subsequently, 53 hesperetin-atherosclerosis crossover targets were collected to establish the protein-protein interaction network. The result of Gene Ontology enrichment analysis indicated that the crossover targets were involved in the regulation of lipid metabolism and inflammatory response. Moreover, the Kyoto Encyclopedia of Genes and Genomes pathway analyses demonstrated that the crossover targets were highly correlated with the pathogenesis of atherosclerosis, such as fluid shear stress and atherosclerosis pathway and the TNF signaling pathway. Finally, an entire hesperetin-target-pathway network was constructed to provide a systematic overview of the pharmacological mechanisms of action of hesperetin against atherosclerosis.ConclusionsThe pharmacological mechanisms of actions of hesperetin against atherosclerosis was unveiled based on biodata mining from the public database and the bioinformatics data analysis-based strategy in this study, contributing to a deeper understanding of the molecular mechanisms of hesperetin in the treatment of atherosclerosis. Based on the results of network pharmacology analysis, we can conclude that hesperetin is surely an excellent candidate for atherosclerosis. We believe our work would be beneficial for further research and development of hesperetin as a natural active ingredient derived from Citrus × aurantium L. for the treatment of atherosclerosis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mingxu Zhang ◽  
Jiawei Yang ◽  
Xiulan Zhao ◽  
Ying Zhao ◽  
Siquan Zhu

AbstractDiabetic retinopathy (DR) is a leading cause of irreversible blindness globally. Qidengmingmu Capsule (QC) is a Chinese patent medicine used to treat DR, but the molecular mechanism of the treatment remains unknown. In this study, we identified and validated potential molecular mechanisms involved in the treatment of DR with QC via network pharmacology and molecular docking methods. The results of Ingredient-DR Target Network showed that 134 common targets and 20 active ingredients of QC were involved. According to the results of enrichment analysis, 2307 biological processes and 40 pathways were related to the treatment effects. Most of these processes and pathways were important for cell survival and were associated with many key factors in DR, such as vascular endothelial growth factor-A (VEGFA), hypoxia-inducible factor-1A (HIF-1Α), and tumor necrosis factor-α (TNFα). Based on the results of the PPI network and KEGG enrichment analyses, we selected AKT1, HIF-1α, VEGFA, TNFα and their corresponding active ingredients for molecular docking. According to the molecular docking results, several key targets of DR (including AKT1, HIF-1α, VEGFA, and TNFα) can form stable bonds with the corresponding active ingredients of QC. In conclusion, through network pharmacology methods, we found that potential biological mechanisms involved in the alleviation of DR by QC are related to multiple biological processes and signaling pathways. The molecular docking results also provide us with sound directions for further experiments.


Author(s):  
Peiliang Wu ◽  
Xiaona Xie ◽  
Mayun Chen ◽  
Junwei Sun ◽  
Luqiong Cai ◽  
...  

Background and Objective: Qishen Yiqi formula (QSYQ) is used to treat cardiovascular disease in the clinical practice of traditional Chinese medicine. However, few studies have explored whether QSYQ affects pulmonary arterial hypertension (PAH), and the mechanisms of action and molecular targets of QSYQ for the treatment of PAH are unclear. A bioinformatics/network topology-based strategy was used to identify the bioactive ingredients, putative targets, and molecular mechanisms of QSYQ in PAH. Methods: A network pharmacology-based strategy was employed by integrating active component gathering, target prediction, PAH gene collection, network topology, and gene enrichment analysis to systematically explore the multicomponent synergistic mechanisms. Results: In total, 107 bioactive ingredients of QSYQ and 228 ingredient targets were identified. Moreover, 234 PAH-related differentially expressed genes with a |fold change| >2 and an adjusted P value < 0.005 were identified between the PAH patient and control groups, and 266 therapeutic targets were identified. The pathway enrichment analysis indicated that 85 pathways, including the PI3K-Akt, MAPK, and HIF-1 signaling pathways, were significantly enriched. TP53 was the core target gene, and 7 other top genes (MAPK1, RELA, NFKB1, CDKN1A, AKT1, MYC, and MDM2) were the key genes in the gene-pathway network based on the effects of QSYQ on PAH. Conclusion: An integrative investigation based on network pharmacology may elucidate the multicomponent synergistic mechanisms of QSYQ in PAH and lay a foundation for further animal experiments, human clinical trials and rational clinical applications of QSYQ.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xin Shen ◽  
Rui Yang ◽  
Jianpeng An ◽  
Xia Zhong

Prunella vulgaris (PV) has a long history of application in traditional Chinese and Western medicine as a remedy for the treatment of subacute thyroiditis (SAT). This study applied network pharmacology to elucidate the mechanism of the effects of PV against SAT. Components of the potential therapeutic targets of PV and SAT-related targets were retrieved from databases. To construct a protein-protein interaction (PPI) network, the intersection of SAT-related targets and PV-related targets was input into the STRING platform. Gene ontology (GO) analysis and KEGG pathway enrichment analysis were carried out using the DAVID database. Networks were constructed by Cytoscape for visualization. The results showed that a total of 11 compounds were identified according to the pharmacokinetic parameters of ADME. A total of 126 PV-related targets and 2207 SAT-related targets were collected, and 83 overlapping targets were subsequently obtained. The results of the KEGG pathway and compound-target-pathway (C-T-P) network analysis suggested that the anti-SAT effect of PV mainly occurs through quercetin, luteolin, kaempferol, and beta-sitosterol and is most closely associated with their regulation of inflammation and apoptosis by targeting the PIK3CG, MAPK1, MAPK14, TNF, and PTGS2 proteins and the PI3K-Akt and TNF signaling pathways. The study demonstrated that quercetin, luteolin, kaempferol, and beta-sitosterol in PV may play a major role in the treatment of SAT, which was associated with the regulation of inflammation and apoptosis, by targeting the PI3K-Akt and TNF signaling pathways.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Sha Di ◽  
Lin Han ◽  
Qing Wang ◽  
Xinkui Liu ◽  
Yingying Yang ◽  
...  

Shen-Qi-Di-Huang decoction (SQDHD), a well-known herbal formula from China, has been widely used in the treatment of diabetic nephropathy (DN). However, the pharmacological mechanisms of SQDHD have not been entirely elucidated. At first, we conducted a comprehensive literature search to identify the active constituents of SQDHD, determined their corresponding targets, and obtained known DN targets from several databases. A protein-protein interaction network was then built to explore the complex relations between SQDHD targets and those known to treat DN. Following the topological feature screening of each node in the network, 400 major targets of SQDHD were obtained. The pathway enrichment analysis results acquired from DAVID showed that the significant bioprocesses and pathways include oxidative stress, response to glucose, regulation of blood pressure, regulation of cell proliferation, cytokine-mediated signaling pathway, and the apoptotic signaling pathway. More interestingly, five key targets of SQDHD, named AKT1, AR, CTNNB1, EGFR, and ESR1, were significant in the regulation of the above bioprocesses and pathways. This study partially verified and predicted the pharmacological and molecular mechanisms of SQDHD on DN from a holistic perspective. This has laid the foundation for further experimental research and has expanded the rational application of SQDHD in clinical practice.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xue Fan ◽  
Xin Guo ◽  
Ying Li ◽  
Mingguo Xu

Background: The purpose of the research is to identify the main active ingredients in Coptidis Rhizoma (CR) and explore the possible molecular mechanisms in the treatment of Kawasaki disease (KD).Materials and Methods: A total of 58 children with KD were randomly divided into a control group and a Berberine treatment group. The therapeutic indicators of the two groups before and after treatment were compared. Then, compounds and drug targets of CR from the TCMSP, SWISS, SEA, and the STITCH were collected, and targeted KD genes were retrieved from the DisGeNET, DrugBank, and GeneCards databases. The network pharmacology approach involved network construction, target prediction, and module analysis. GO and KEGG enrichment analysis were performed to investigate the possible pathways related to CR for KD treatments. Finally, protein expression was determined to verify the core targets using Western blotting in the cell experiment.Results: In total, nine compounds, 369 relative drug targets, and 624 KD target genes were collected in the above database. The network analysis revealed that 41 targets might be the therapeutic targets of CR on KD. GO and KEGG enrichment analysis revealed that the biological processes, namely, response to hormone, response to inorganic substance, and enzyme-linked receptor protein signaling pathway, and Pathways in cancer, Toll-like receptor signaling pathway, and Pancreatic cancer are the most significant. Protein expression of CASP3, PTGS2, and SRC was upregulated and AKT1 and ERK were downregulated.Conclusion: We provided useful resources to understand the molecular mechanism and the potential targets for novel therapy of KD.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qing Liu ◽  
Ning Li ◽  
Yifang Yang ◽  
Xirui Yan ◽  
Yang Dong ◽  
...  

Background: The traditional Chinese medicine formula ErLong ZuoCi (ELZC) has been extensively used to treat age-related hearing loss (ARHL) in clinical practice in China for centuries. However, the underlying molecular mechanisms are still poorly understood.Objective: Combine network pharmacology with experimental validation to explore the potential molecular mechanisms underlying ELZC with a systematic viewpoint.Methods: The chemical components of ELZC were collected from the Traditional Chinese Medicine System Pharmacology database, and their possible target proteins were predicted using the SwissTargetPrediction database. The putative ARHL-related target proteins were identified from the database: GeneCards and OMIM. We constructed the drug-target network as well as drug-disease specific protein-protein interaction networks and performed clustering and topological property analyses. Functional annotation and signaling pathways were performed by gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis. Finally, in vitro experiments were also performed to validate ELZC’s key target proteins and treatment effects on ARHL.Results: In total, 63 chemical compounds from ELZC and 365 putative ARHL-related targets were identified, and 1860 ARHL-related targets were collected from the OMIM and GeneCards. A total of 145 shared targets of ELZC and ARHL were acquired by Venn diagram analysis. Functional enrichment analysis suggested that ELZC might exert its pharmacological effects in multiple biological processes, such as cell proliferation, apoptosis, inflammatory response, and synaptic connections, and the potential targets might be associated with AKT, ERK, and STAT3, as well as other proteins. In vitro experiments revealed that ELZC pretreatment could decrease senescence-associated β-galactosidase activity in hydrogen peroxide-induced auditory hair cells, eliminate DNA damage, and reduce cellular senescence protein p21 and p53. Finally, Western blot analysis confirmed that ELZC could upregulate the predicted target ERK phosphorylation.Conclusion: We provide an integrative network pharmacology approach, in combination with in vitro experiments to explore the underlying molecular mechanisms governing ELZC treatment of ARHL. The protective effects of ELZC against ARHL were predicted to be associated with cellular senescence, inflammatory response, and synaptic connections which might be linked to various pathways such as JNK/STAT3 and ERK cascade signaling pathways. As a prosperous possibility, our experimental data suggest phosphorylation ERK is essential for ELZC to prevent degeneration of cochlear.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Henning Großkopf ◽  
Sarah Vogel ◽  
Claudia Damaris Müller ◽  
Sebastian Köhling ◽  
Jan-Niklas Dürig ◽  
...  

Abstract Glycosaminoglycans (GAGs) are essential functional components of the extracellular matrix (ECM). Artificial GAGs like sulfated hyaluronan (sHA) exhibit pro-osteogenic properties and boost healing processes. Hence, they are of high interest for supporting bone regeneration and wound healing. Although sulfated GAGs (sGAGs) appear intracellularly, the knowledge about intracellular effects and putative interaction partners is scarce. Here we used an affinity-purification mass spectrometry-based (AP-MS) approach to identify novel and particularly intracellular sGAG-interacting proteins in human bone marrow stromal cells (hBMSC). Overall, 477 proteins were found interacting with at least one of four distinct sGAGs. Enrichment analysis for protein localization showed that mainly intracellular and cell-associated interacting proteins were identified. The interaction of sGAG with α2-macroglobulin receptor-associated protein (LRPAP1), exportin-1 (XPO1), and serine protease HTRA1 (HTRA1) was confirmed in reverse assays. Consecutive pathway and cluster analysis led to the identification of biological processes, namely processes involving binding and processing of nucleic acids, LRP1-dependent endocytosis, and exosome formation. Respecting the preferentially intracellular localization of sGAG in vesicle-like structures, also the interaction data indicate sGAG-specific modulation of vesicle-based transport processes. By identifying many sGAG-specific interacting proteins, our data provide a resource for upcoming studies aimed at molecular mechanisms and understanding of sGAG cellular effects.


2020 ◽  
Author(s):  
Jialin Li ◽  
Hua Luo ◽  
Xinkui Liu ◽  
Jingyuan Zhang ◽  
Wei Zhou ◽  
...  

Abstract Background: Yuzhi Zhixue Granule (YZG)is a traditional Chinese patent medicine for treating excessive menstrual flow caused by ovulatory dysfunctional uterine bleeding (ODUB) accompanied by heat syndrome. However, the underlying molecular mechanisms, potential targets, and active ingredients of this prescription are still unknown. Therefore, it is imperative to explore the molecular mechanism of YZG.Methods: The active compounds in YZG were screened by the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). The putative targets of YZG were collected via TCMSP and Search Tool for Interacting Chemicals (STITCH) databases. The Therapeutic Target Database (TTD) and Pharmacogenomics Knowledgebase (PharmGKB) databases were used to identify the therapeutic targets of ODUB. A protein-protein interaction (PPI) network containing both the putative targets of YZG and known therapeutic targets of ODUB was built. Furthermore, bioinformatics resources from the database for annotation, visualization and integrated discovery (DAVID) were utilized for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Finally, molecular docking was performed to verify the binding effect between the YZG screened compounds and potential therapeutic target molecules.Results: The study employed a network pharmacology method, mainly containing target prediction, network construction, functional enrichment analysis, and molecular docking to systematically research the mechanisms of YZG in treating ODUB. The putative targets of YZG that treat ODUB mainly involved PTGS1, PTGS2, ALOX5, CASP3, LTA4H, F7 and F10. The functional enrichment analysis suggested that the produced therapeutic effect of YZG against ODUB is mediated by synergistical regulation of several biological pathways, including apoptosis arachidonic acid (AA) metabolism, serotonergic synapse, complement and coagulation cascades and C-type lectin receptor signaling pathways. Molecular docking simulation revealed good binding affinity of the seven putative targets with the corresponding compounds.Conclusion: This novel and scientific network pharmacology-based study holistically elucidated the basic pharmacological effects and the underlying mechanisms of YZG in the treatment of ODUB.


2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Ding Li ◽  
Shi-Fang Li ◽  
Xiao-Yuan Li ◽  
Xiao-Wei Sun ◽  
Tian-Yue Sun ◽  
...  

Objective. To explore the potential mechanism of Huanglian Jiedu Decoction (HJD) treatment and prevention of metastatic Cutaneous Melanoma (CM) occurrence and metastasis based on network pharmacological methods and immune infiltration analysis. Methods. The GEO database was used to obtain metastatic CM disease targets, the TCMSP database and the HERB database were used to obtain HJD action targets, core genes were screened by protein interaction network, and the potential mechanism of HJD in the treatment of metastatic CM was explored by enrichment analysis, prognostic analysis and immune infiltration analysis. Results. HJD treatment of metastatic CM involved 60 targets, enrichment analysis showed that HJD treatment of metastatic CM involved Chemokine signaling pathway, NF-kappa B signaling pathway, and Fluid shear stress and atherosclerosis, etc. Prognostic analysis revealed that HJD had a certain ability to improve the prognosis of metastatic CM patients. Immune infiltration analysis showed that HJD could inhibit the immune cell infiltration of metastatic CM patients by acting on related targets. Conclusions. Our study identified the potential mechanism of HJD in the treatment of metastatic CM through network pharmacology, and revealed the mechanism of HJD in the prevention of Skin Cutaneous Melanoma metastasis through immune infiltration analysis and prognostic analysis.


Sign in / Sign up

Export Citation Format

Share Document