scholarly journals Construction and Investigation of a circRNA-Associated ceRNA Regulatory Network in Tetralogy of Fallot

2020 ◽  
Author(s):  
Haifei Yu ◽  
Xinrui Wang ◽  
Hua Cao

Abstract Background: As the most frequent type of cyanotic congenital heart diseases (CHD), Tetralogy of Fallot (TOF) has a relatively poor prognosis without the corrective surgery. Circular RNA (circRNA) represents a novel class of endogenous noncoding RNAs that regulate target gene expression post-transcriptionally in heart development. Here, we investigate the potential role of ceRNA network in the pathogenesis of TOF. Methods: To identify circRNAs expression profiles in Tetralogy of Fallot, microarrays were used to screen the differentially expressed circRNA between 3 TOF and 3 control human myocardial tissue samples. Then, a dysregulated circRNA- associated ceRNA network was constructed via using the established multi-step screening strategy.Results: In summary, total 276 differentially expressed circRNAs were identified, including 214 up-regulated and 62 down-regulated ones in TOF samples. By constructing the circRNA-associated ceRNA network based on the bioinformatics data, a total of 19 key circRNAs, 9 key miRNAs and 34 key mRNAs were further screened. Moreover, by enlarging the samples size, the qPCR results validated that the positive correlations between hsa_circ_0007798 and HIF1A.Conclusions: The findings in this study provide a comprehensive understanding of the ceRNA network involved in TOF biology, such as hsa_circ_0007798/miR-199b-5p/HIF1A signal axis, and may offer candidate diagnostic biomarkers or potential therapeutic targets for TOF. In addtion, we propose that the ceRNA network regulates TOF progression.

2020 ◽  
Author(s):  
Haifei Yu ◽  
Xinrui Wang ◽  
Hua Cao

Abstract Background: As the most frequent type of cyanotic congenital heart diseases (CHD), Tetralogy of Fallot (TOF) has a relatively poor prognosis without the corrective surgery. Circular RNA (circRNA) represents a novel class of endogenous noncoding RNAs that regulate target gene expression post-transcriptionally in heart development. Here, we investigate the potential role of ceRNA network in the pathogenesis of TOF. Methods: To identify circRNAs expression profiles in Tetralogy of Fallot, microarrays were used to screen the differentially expressed circRNA between 3 TOF and 3 control human myocardial tissue samples. Then, a dysregulated circRNA- associated ceRNA network was constructed via using the established multi-step screening strategy.Results: In summary, total 276 differentially expressed circRNAs were identified, including 214 up-regulated and 62 down-regulated ones in TOF samples. By constructing the circRNA-associated ceRNA network based on the bioinformatics data, a total of 19 key circRNAs, 9 key miRNAs and 34 key mRNAs were further screened. Moreover, by enlarging the samples size, the qPCR results validated that the positive correlations between hsa_circ_0007798 and HIF1A.Conclusions: The findings in this study provide a comprehensive understanding of the ceRNA network involved in TOF biology, such as hsa_circ_0007798/miR-199b-5p/HIF1A signal axis, and may offer candidate diagnostic biomarkers or potential therapeutic targets for TOF. In addtion, we propose that the ceRNA network regulates TOF progression.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Haifei Yu ◽  
Xinrui Wang ◽  
Hua Cao

Abstract Background As the most frequent type of cyanotic congenital heart disease (CHD), tetralogy of Fallot (TOF) has a relatively poor prognosis without corrective surgery. Circular RNAs (circRNAs) represent a novel class of endogenous noncoding RNAs that regulate target gene expression posttranscriptionally in heart development. Here, we investigated the potential role of the ceRNA network in the pathogenesis of TOF. Methods To identify circRNA expression profiles in TOF, microarrays were used to screen the differentially expressed circRNAs between 3 TOF and 3 control human myocardial tissue samples. Then, a dysregulated circRNA-associated ceRNA network was constructed using the established multistep screening strategy. Results In summary, a total of 276 differentially expressed circRNAs were identified, including 214 upregulated and 62 downregulated circRNAs in TOF samples. By constructing the circRNA-associated ceRNA network based on bioinformatics data, a total of 19 circRNAs, 9 miRNAs, and 34 mRNAs were further screened. Moreover, by enlarging the sample size, the qPCR results validated the positive correlations between hsa_circ_0007798 and HIF1A. Conclusions The findings in this study provide a comprehensive understanding of the ceRNA network involved in TOF biology, such as the hsa_circ_0007798/miR-199b-5p/HIF1A signalling axis, and may offer candidate diagnostic biomarkers or potential therapeutic targets for TOF. In addition, we propose that the ceRNA network regulates TOF progression.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Han Sheng ◽  
Huan Pan ◽  
Ming Yao ◽  
Longsheng Xu ◽  
Jianju Lu ◽  
...  

Circular RNA (circRNA) is closely related to tumorigenesis and cancer progression. Yet, the roles of cancer-specific circRNAs in the circRNA-related ceRNA network of breast cancer (BRCA) remain unclear. The aim of this study was to construct a ceRNA network associated with circRNA and to explore new therapeutic and prognostic targets and biomarkers for breast cancer. We downloaded the circRNA expression profile of BRCA from Gene Expression Omnibus (GEO) microarray datasets and downloaded the miRNA and mRNA expression profiles of BRCA from The Cancer Genome Atlas (TCGA) database. Differentially expressed mRNAs (DEmRNAs), differentially expressed miRNAs (DEmiRNAs), and differentially expressed circRNAs (DEcircRNAs) were identified, and a competitive endogenous RNA (ceRNA) regulatory network was constructed based on circRNA–miRNA pairs and miRNA–mRNA pairs. Gene ontology and pathway enrichment analyses were performed on mRNAs regulated by circRNAs in ceRNA networks. Survival analysis and correlation analysis of all mRNAs and miRNAs in the ceRNA network were performed. A total of 72 DEcircRNAs, 158 DEmiRNAs, and 2762 DE mRNAs were identified. The constructed ceRNA network contains 60 circRNA–miRNA pairs and 140 miRNA–mRNA pairs, including 40 circRNAs, 30 miRNAs, and 100 mRNAs. Functional enrichment indicated that DEmRNAs regulated by DEcircRNAs in ceRNA networks were significantly enriched in the PI3K-Akt signaling pathway, microRNAs in cancer, and proteoglycans in cancer. Survival analysis and correlation analysis of all mRNAs and miRNAs in the ceRNA network showed that 13 mRNAs and 6 miRNAs were significantly associated with overall survival, and 48 miRNA–mRNA interaction pairs had a significant negative correlation. A PPI network was established, and 21 hub genes were determined from the network. This study provides an effective bioinformatics basis for further understanding of the molecular mechanisms and predictions of breast cancer. A better understanding of the circRNA-related ceRNA network in BRCA will help identify potential biomarkers for diagnosis and prognosis.


Author(s):  
Xingyu Zhang ◽  
Yunqian Gao ◽  
Xiaoping Zhang ◽  
Xiaoqing Zhang ◽  
Ying Xiang ◽  
...  

Heart development requires robust gene regulation, and the related disruption could lead to congenital heart disease (CHD). To gain insights into the regulation of gene expression in CHD, we obtained the expression profiles of long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) in 22 heart tissue samples with tetralogy of Fallot (TOF) through strand-specific transcriptomic analysis. Using a causal inference framework based on the expression correlations and validated microRNA (miRNA)–lncRNA–mRNA evidences, we constructed the competing endogenous RNA (ceRNA)-mediated network driven by lncRNAs. Four lncRNAs (FGD5-AS1, lnc-GNB4-1, lnc-PDK3-1, and lnc-SAMD5-1) were identified as hub lncRNAs in the network. FGD5-AS1 was selected for further study since all its targets were CHD-related genes (NRAS, PTEN, and SMAD4). Both FGD5-AS1 and SMAD4 could bind with hsa-miR-421, which has been validated using dual-luciferase reporter assays. Knockdown of FGD5-AS1 not only significantly reduced PTEN and SMAD4 expression in HEK 293 and the fetal heart cell line (CCC-HEH-2) but also increased the transcription of its interacted miRNAs in a cell-specific way. Besides ceRNA mechanism, RNAseq and ATACseq results showed that FGD5-AS1 might play repression roles in heart development by transcriptionally regulating CHD-related genes. In conclusion, we identified a ceRNA network driven by lncRNAs in heart tissues of TOF patients. Furthermore, we proved that FGD5-AS1, one hub lncRNA in the TOF heart ceRNA network, regulates multiple genes transcriptionally and epigenetically.


2020 ◽  
Vol 15 ◽  
Author(s):  
Yeqing Sun ◽  
Lei Chen ◽  
Yingqi Zhang ◽  
Jincheng Zhang ◽  
Shashi Ranjan Tiwari

Background: Osteoarthritis (OA), one of the most important causes leading to joint disability, was considered as an untreatable disease. A series of genes were reported to regulate the pathogenesis of OA, including microRNAs, Long non-coding RNAs and Circular RNA. So far, the expression profiles and functions of lncRNAs, mRNAs, and circRNAs in OA are not fully understood. Objective: The present study aimed to identify differently expressed genes in OA. Methods: The present study conducted RNA-seq to identify differently expressed genes in OA. Ontology (GO) analysis was used to analysis the Molecular Function and Biological Process. KEGG pathway analysis was used to perform the differentially expressed lncRNAs in biological pathways. Results: Hierarchical clustering revealed a total of 943 mRNAs, 518 lncRNAs, and 300 circRNAs were dysregulated in OA compared to normal samples. Furthermore, we constructed differentially expressed mRNAs mediated proteinprotein interaction network, differentially expressed lncRNAs mediated trans regulatory networks, and competitive endogenous RNA (ceRNA) to reveal the interaction among these genes in OA. Bioinformatics analysis revealed these dysregulated genes were involved in regulating multiple biological processes, such as wound healing, negative regulation of ossification, sister chromatid cohesion, positive regulation of interleukin-1 alpha production, sodium ion transmembrane transport, positive regulation of cell migration, and negative regulation of inflammatory response. To the best of our knowledge, this study for the first time revealed the expression pattern of mRNAs, lncRNAs and circRNAs in OA. Conclusion: This study provided novel information to validate these differentially expressed RNAs may be as possible biomarkers and targets in OA.


Author(s):  
Han-Wen Chen ◽  
Xiao-Xia Zhang ◽  
Zhu-Ding Peng ◽  
Zu-Min Xing ◽  
Yi-Wen Zhang ◽  
...  

AbstractTreatment of bone cancer pain (BCP) caused by bone metastasis in advanced cancers remains a challenge in clinical oncology, and the underlying mechanisms of BCP are poorly understood. This study aimed to investigate the pathogenic roles of circular RNAs (circRNAs) in regulating cancer cell proliferation and BCP development. Eight differentially expressed circRNAs in the rat spinal cord were validated by agarose gel electrophoresis and Sanger sequencing. Expression of circRNAs and mRNAs was detected by quantitative RT-PCR. MTS assay and flow cytometry were performed to analyze cell proliferation and apoptosis, respectively. Differentially expressed mRNA profiles were characterized by deep RNA sequencing, hierarchical clustering, and functional categorization. The interactions among circRNAs, microRNAs (miRNAs), and mRNAs were predicted using TargetScan. Additionally, western blot was performed to determine the protein levels of Pax8, Isg15, and Cxcl10. Multiple circRNAs were differentially expressed in the spinal cords of BCP model rats; of these, circSlc7a11 showed the greatest increase in expression. The overexpression of circSlc7a11 significantly promoted cell proliferation and repressed apoptosis of LLC-WRC 256 and UMR-106 cells, whereas circSlc7a11 silencing produced the opposite effects. Altered expression of circSlc7a11 also induced substantial changes in the mRNA expression profiles of LLC-WRC 256 cells; these changes were linked to multiple apoptotic processes and signaling pathways, such as the chemokine signaling pathway, and formed a complex circRNA/miRNA/mRNA network. Additionally, Pax8, Isg15, and Cxc110 protein level in LLC-WRC 256 cells was consistent with the mRNA results. The circRNA circSlc7a11 regulates rat BCP development by modulating LLC-WRC 256 cell proliferation and apoptosis through multiple-signaling mechanisms.


Author(s):  
Ahmed Elshimy ◽  
Rasha Tolba Khattab ◽  
Hend Galal Eldeen Mohamed Ali Hassan

Abstract Background Tetralogy of Fallot (TOF) is considered the most common form of cyanotic congenital heart diseases (CHD), accounting for about 10% of cases. It includes four main cardiac defects, in addition to various extra-cardiac anomalies. Aim This study aimed to evaluate cardiac and extra-cardiac vascular defects associated with TOF among Egyptian children, regarding frequency and types with assessment of multi-slice or multi-detector computed tomography (MDCT) role in their diagnosis. Definitely, full detection of these vascular anomalies has utmost importance when evaluating such patients particularly before surgical intervention. Methods This study included 60 pediatric patients diagnosed as TOF, who underwent MDCT examination in our institute during period of 6 months from (March to September 2020), to confirm their trans-thoracic echocardiography (TTE) findings and detect other vascular abnormalities which cannot be precisely detected with TTE before their surgical interventions. Results The incidence of different extra-cardiac vascular defects diagnosed by MDCT among our patients was 85% which was significantly higher than that detected by TTE (55%). Moreover, MDCT was superior to TTE assessment as regards its diagnostic accuracy (96.6% vs. 80%), sensitivity (98% vs. 76.9%), and specificity (88.9% vs. 85.7%), in addition to both positive and negative predictive values. The most common anomalies detected were affecting the pulmonary artery (80%), followed by aorto-pulmonary vessels (45%), then aortic artery (40%), coronary arteries (20%), and lastly vena cava connection (6.7%). Patients’ demographic characteristics and clinical presentations were also presented. Conclusion This study confirmed that many extra-cardiac vascular defects are commonly associating cardiac lesions in TOF and emphasizing the great value of MDCT in their diagnosis. Certainly, proper detection of these anomalies will help decision-making during preoperative evaluation, corrective interventions, and further management of these cases.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Xuewei Huang ◽  
Junyan Zhang ◽  
Zengsu Liu ◽  
Meng Wang ◽  
Xiaolong Fan ◽  
...  

Abstract Background Infectious bursal disease virus (IBDV) causes acute, highly contagious, immunosuppressive, and lethal infectious disease in young chickens and mainly infects the bursa of Fabricius (BF). To investigate interactions between IBDV and its host, RNA sequencing was applied to analyze the responses of the differentially expressed transcriptional profiles of BF infected by very virulent IBDV (vvIBDV). Results In total, 317 upregulated and 94 downregulated mRNAs were found to be significantly differentially expressed in infected chickens, compared to controls. Long non-coding RNA (lncRNA) and circular RNA (circRNA) alterations were identified in IBDV-infected chickens, and significantly different expression was observed in 272 lncRNAs and 143 circRNAs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed to assess the functions of significantly dysregulated genes, which showed that the JAK-STAT signaling pathway, the NOD-like receptor signaling pathway, and apoptosis may be activated by IBDV infection. We predicted interactions between differentially expressed genes and produced lncRNA-mRNA and circRNA-miRNA-mRNA regulator network. Conclusions The present study identified the expression profiles of mRNAs, lncRNAs, and circRNAs during vvIBDV infection and provides new insights into the pathogenesis of IBDV and antiviral immunity of the host.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Jianqiang Kou ◽  
Guoming Liu ◽  
Xiangyun Liu ◽  
Tianmi Li ◽  
Ying Wei ◽  
...  

Recent studies have reported that circular RNAs (circRNAs) play a crucial regulatory role in a variety of human diseases. However, the roles of circRNAs in ankylosing spondylitis (AS) remain unclear. In this study, we conducted circRNA expression profiling of the spinal ligament tissues of patients with AS by RNA sequencing (RNA-seq) and analyzed the potential functions of differentially expressed circRNA by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses to investigate the potential mechanisms associated with AS. The results showed that a total of 1,172 circRNAs were detected in the spinal ligament tissue samples, of which 123 circRNAs were significantly differentially expressed by a fold change≥1.5 and p value < 0.05. Among these, 57 circRNAs were upregulated, and 66 were downregulated. GO and KEGG analyses demonstrated that the differentially expressed circRNAs were mainly involved in the regulation of biological processes of peptidyl-serine phosphorylation and human immune system that may be related to AS. In addition, the circRNA/miRNA interaction networks were established to predict the potential roles of differentially expressed circRNAs by bioinformatics analysis. Taken together, these results revealed the expression profiles of circRNAs and the potential functions of the differentially expressed circRNAs in the spinal ligament tissue of patients with AS, which may provide new clues for understanding the mechanisms associated with AS, and proceed to identify novel potential molecular targets for the diagnoses and treatment of AS.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Xuefeng Gu ◽  
Dongyang Jiang ◽  
Yue Yang ◽  
Peng Zhang ◽  
Guoqing Wan ◽  
...  

Background. Moyamoya disease (MMD) is a rare cerebrovascular disease characterized by chronic progressive stenosis or occlusion of the bilateral internal carotid artery (ICA), the anterior cerebral artery (ACA), and the middle cerebral artery (MCA). MMD is secondary to the formation of an abnormal vascular network at the base of the skull. However, the etiology and pathogenesis of MMD remain poorly understood. Methods. A competing endogenous RNA (ceRNA) network was constructed by analyzing sample-matched messenger RNA (mRNA), long non-coding RNA (lncRNA), and microRNA (miRNA) expression profiles from MMD patients and control samples. Then, a protein-protein interaction (PPI) network was constructed to identify crucial genes associated with MMD. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses were employed with the DAVID database to investigate the underlying functions of differentially expressed mRNAs (DEmRNAs) involved in the ceRNA network. CMap was used to identify potential small drug molecules. Results. A total of 94 miRNAs, 3649 lncRNAs, and 2294 mRNAs were differentially expressed between MMD patients and control samples. A synergistic ceRNA lncRNA-miRNA-mRNA regulatory network was constructed. Core regulatory miRNAs (miR-107 and miR-423-5p) and key mRNAs (STAT5B, FOSL2, CEBPB, and CXCL16) involved in the ceRNA network were identified. GO and KEGG analyses indicated that the DEmRNAs were involved in the regulation of the immune system and inflammation in MMD. Finally, two potential small molecule drugs, CAY-10415 and indirubin, were identified by CMap as candidate drugs for treating MMD. Conclusions. The present study used bioinformatics analysis of candidate RNAs to identify a series of clearly altered miRNAs, lncRNAs, and mRNAs involved in MMD. Furthermore, a ceRNA lncRNA-miRNA-mRNA regulatory network was constructed, which provides insights into the novel molecular pathogenesis of MMD, thus giving promising clues for clinical therapy.


Sign in / Sign up

Export Citation Format

Share Document