scholarly journals Potential Military Cotton Textiles by Carbon Quantum Dots

Author(s):  
Hossam E. Emam ◽  
Mahmoud El-Shahat ◽  
Mohamed S. Hasanin ◽  
Hanan B. Ahmed

Abstract Owing to the sensitivity for color vicissitude by exposing to UV irradiation, manufacturing of fluorescent fabrics is widely demanded to be exploited in camping, sensing and military purposes. Pyrimidine based heterocycles were investigated with excellent pharmacological activity, however, their photoluminescence activity was never been investigated till now. The presented approach demonstrate a quite novel route for manufacturing of potential military textiles (fluorescent/UV-protective cotton fabrics with micobicide activity) via exploitation of carbon quantum dots (CQDs) nucleated from pyrimidine based heterocycle (4-(2,4-dichlorophenyl)-6-oxo-2-thioxohexahydropyrimidine-5-carbonitrile, Target Molecule, TM). The synthesized TM & CQDs were separately immobilized within both of native and cationized cotton fabrics to obtain TM@cotton, CQDs@cotton, TM@Q-cotton and CQDs@Q-cotton fabrics. The estimated yellowness index, intensity of the fluorescence peak, UV-blocking activity and microbicide action, were all followed the order of CQDs@Q-cotton > TM@Q-cotton > CQDs@cotton > TM @cotton. CQDs@Q-cotton showed quite good durability, as after 5 washings, yellowness index was diminished from 26.5 to only 20.3, florescence intensity for CQDs@Q-cotton was decreased from 540 nm to 340 nm and transmission percent was increased from 7 % to 10 %. Moreover, even after 10 washings, microbial inhibition (as a percent) against E. coli, Staphylococcus aureus and Candida albicans was estimated to 63 %, 68 % and 67 %, respectively, while, UV protection factor (UPF) was diminished from 38.2 (very good) to 21.5 (good). The presented unique route was succeeded for manufacturing of durable fluorescent textiles that could be superiorly applied as potential military textiles.

2020 ◽  
Vol 8 (16) ◽  
pp. 3506-3512
Author(s):  
Han-Wei Li ◽  
Ju-Yi Mao ◽  
Chia-Wen Lien ◽  
Chu-Kuei Wang ◽  
Jui-Yang Lai ◽  
...  

The isothermal amplification products of mecA and femA genes induce the fluorescence quenching of platinum ions-capped carbon quantum dots to allow the specific identification of methicillin-resistant Staphylococcus aureus.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Thi-Diem Bui ◽  
Quang-Liem Nguyen ◽  
Thi-Bich Luong ◽  
Van Thuan Le ◽  
Van-Dat Doan

In this study, Mn-doped ZnSe/ZnS core/shell quantum dots (CSQDs) were synthesized in aqueous solution using polyethylene glycol as a surface stabilizer and successfully applied in the detection of Escherichia coli O157:H7 and methicillin-resistant Staphylococcus aureus (MRSA) for the first time. The CSQDs were conjugated with anti-E. coli antibody and anti-MRSA antibody via protein A supported by 1-ethyl-3-(-3-dimethylaminopropyl)carbodiimide hydrochloride for fluorescent labeling of the intact bacterial cells. The detection was performed for the bacterial strains cultivated in Luria-Bertani liquid medium. The obtained results indicate that E. coli O157:H7 and MRSA can be detected within 30 min at a high sensitivity of 101 CFU/mL. This labeling method based on the highly fluorescent CSQDs may have great potential for use in the food industry to check and prevent outbreaks of foodborne illness.


Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1116
Author(s):  
Shuiqin Chai ◽  
Lijia Zhou ◽  
Shuchen Pei ◽  
Zhiyuan Zhu ◽  
Bin Chen

It is a major challenge to effectively inhibit microbial pathogens in the treatment of infectious diseases. Research on the application of nanomaterials as antibacterial agents has evidenced their great potential for the remedy of infectious disease. Among these nanomaterials, carbon quantum dots (CQDs) have attracted much attention owing to their unique optical properties and high biosafety. In this work, P-doped CQDs were prepared by simple hydrothermal treatment of m-aminophenol and phosphoric acid with fluorescence emission at 501 nm when excited at 429 nm. The P-doped CQDs showed effective antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The minimal inhibitory concentrations (MICs) of P-doped CQD were 1.23 mg/mL for E. coli and 1.44 mg/mL for S. aureus. Furthermore, the morphologies of E. coli cells were damaged and S. aureus became irregular when treated with the P-doped CQDs. The results of zeta potential analysis demonstrated that the P-doped CQDs inhibit antibacterial activity and destroy the structure of bacteria by electronic interaction. In combination, the results of this study indicate that the as-prepared P-doped CQDs can be a promising candidate for the treatment of bacterial infections.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1809
Author(s):  
Yanyan Wu ◽  
Guang Yang ◽  
Henny C. van der Mei ◽  
Linqi Shi ◽  
Henk J. Busscher ◽  
...  

Orally administrated probiotic bacteria can aid antibiotic treatment of intestinal infections, but their arrival at their intestinal target site is hampered by killing in the gastrointestinal tract and by antibiotics solely intended for pathogen killing. Carbon-quantum-dots are extremely small nanoparticles and can be derived from different sources, including bacteria. Here, we hypothesize that carbon-quantum-dots inherit antibacterial activity from probiotic source bacteria to fulfill a similar role as live probiotics in intestinal infection therapy. Physico-chemical analyses indicated that carbon-quantum-dots, hydrothermally derived from Bifidobacterium breve (B-C-dots), inherited proteins and polysaccharides from their source-bacteria. B-C-dots disrupted biofilm matrices of Escherichia coli and Salmonella typhimurium biofilms through extensive reactive-oxygen-species (ROS)-generation, causing a decrease in volumetric bacterial-density in biofilms. Decreased bacterial densities leave more open space in biofilms and have enhanced ciprofloxacin penetration and killing potential in an E. coli biofilm pre-exposed to probiotic B-C-dots. Pathogenic carbon-quantum-dots hydrothermally derived from E. coli (E-C-dots) did not disrupt pathogenic biofilms nor enhance E. coli killing potential by ciprofloxacin. B-C-dots were biosafe in mice upon daily administration, while E-C-dots demonstrated a decrease in white blood cell and platelet counts and an increase in C-reactive protein levels. Therefore, the way is paved for employing probiotic carbon-quantum-dots instead of viable, probiotic bacteria for synergistic use with existing antibiotics in treating intestinal infections.


2021 ◽  
Vol 33 (11) ◽  
pp. 2662-2666
Author(s):  
Amnuay Noypha ◽  
Paweena Porrawatkul ◽  
Nongyao Teppaya ◽  
Parintip Rattanaburi ◽  
Saksit Chanthai ◽  
...  

Borassus flabellifer vinegar–graphene quantum dots (BFV-GQDs) were successfully synthesized using a pyrolysis method with Borassus flabellifer vinegar (BFV) as the precursor. All the samples were characterized using ultraviolet-visible spectrophotometry (UV-Vis), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The antibacterial activities of BFV-GQDs against strains of Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus) were determined using the agar well diffusion method for preliminary screening, while minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined using the broth macro-dilution method. The zones of inhibition were compared with those of citric acid–graphene quantum dots (CA-GQDs). It was observed that the synthesized BFV-GQDs demonstrated excellent antibacterial activity against Staphylococcus aureus (82.3%) and good antibacterial activity against Escherichia coli (73.3%). The MIC of BFV-GQDs against E. coli was 6.25 mg/mL and S. aureus was 12.5 mg/mL, whereas the MBC of BFV-GQDs against E. coli was 12.5 mg/mL and S. aureus was 25.0 mg/mL.


2020 ◽  
Vol 56 (15) ◽  
pp. 2316-2319 ◽  
Author(s):  
Peili Li ◽  
Shuai Liu ◽  
Weiwei Cao ◽  
Gaoke Zhang ◽  
Xu Yang ◽  
...  

Carbon quantum dots derived from gentamicin sulfate show low drug resistance, eradication of mature Staphylococcus aureus biofilm and low toxicity to mammalian cells.


RSC Advances ◽  
2015 ◽  
Vol 5 (106) ◽  
pp. 87528-87534 ◽  
Author(s):  
Prashant Dubey ◽  
Kumud Malika Tripathi ◽  
Ragini Mishra ◽  
Anshu Bhati ◽  
Anupriya Singh ◽  
...  

A high yield simple synthetic approach for water soluble photoluminescent carbon quantum dots via a single step, hydrothermal process, was described. Photoluminescent multi-colored emissions were used to label E. coli cells.


2021 ◽  
Author(s):  
Hossam E. Emam ◽  
Saad Zaghloul ◽  
Hanan B. Ahmed

Abstract Unique technique is currently demonstrated for preparation of ultraviolet protective cotton fabrics with full shielding effect, via self-implantation of palladium nanopanciles. Palladium (Pd) nanopanciles were in-situ immobilized within native & cationized cotton using two different concentrations of palladium precursor (20 & 60 mM) under strong acidic (pH 2) and basic (pH 11.5) media. Cationization (50% and 100%) of cotton fabrics was performed in order to increase the accessibility of fabric for controllable implantation of palladium nanopanciles. Size distribution of palladium nanopanciles in supernatant solution was estimated via Transmission electron microscopy to be 3.2 nm. The estimated data showed that the sample prepared with the highest cationization percent and highest concentration of palladium precursor in strong alkaline medium exhibited the highest yellowness index, color strength and excellent ultraviolet shielding effects. The yellowness index was significantly increased from 15.67 for cationized cotton to 74.99 for the sample prepared with the highest cationization percent and highest concentration of Pd+2 in alkaline medium (Pd-CC (100)4). Tensile strength was insignificantly decreased from 93.2 MPa for cationized cotton to 84.5 MPa for Pd-CC (100)4. Ultraviolet shielding effect was superiorly enhanced with implantation of palladium nanopanciles. The UV protection factor (UPF) was also excellency increased from 1.3 (insufficient) for native cotton to 256.6 (excellent) for Pd-CC (100)4.


Sign in / Sign up

Export Citation Format

Share Document