scholarly journals Stmn1 up-regulates Cdx2 expression and participates in gastric intestinal metaplasia in vitro and in vivo: a randomized controlled trial

2020 ◽  
Author(s):  
Xuan Chen ◽  
Lizuan Chen ◽  
Zeming Ren ◽  
Yeling Tong ◽  
Guanhai Dai ◽  
...  

Abstract BACKGROUND AND PURPOSE: Stmn1 is over-expressed in almost all pathological stages during gastric cancer development, such as chronic atrophic gastritis, dysplasia, and gastric cancer. IM is an important precancerous lesion of gastric cancer, however, whether Stmn1 was up-regulated or down-regulated in this stage is still unknown. We aimed to evaluate the expression level of Stmn1 in IM in vivo and its relationship with important gene of IM named Cdx2 in vitro.EXPERIMENTAL APPROACH: Wistar rats (n=12, sex in half) were gavaged with MNNG (167μg/ml) to induce IM model in stomach. After pathological examination with AB staining to confirm that the model was successful, relative expression level of Stmn1 was detected between normal group and model group using RT-qPCR. Human gastric cell line GES-1 was used to investigate whether Stmn1 influence expression level of IM essential gene Cdx2 by over-expressing or down-expressing experiments, RT-qPCR and western blot.KEY RESULTS: We have demonstrated that Stmn1 was up-regulated in IM model induced by MNNG in rats in vivo, and it could significantly up-regulate Cdx2 expression level in human gastric cell line GES-1 in vitro.CONCLUSIONS AND IMPLICATIONS: We demonstrated that Stmn1 was involved in IM in this model and it could up-regulating Cdx2 in human gastric cell line GES-1 in vitro. These results suggested that Stmn1 might be a potential biomarker or candidate treatment target of IM in stomach.

2021 ◽  
Author(s):  
Zi-Jian Deng ◽  
Dong-Wen Chen ◽  
Xi-Jie Chen ◽  
Jia-Ming Fang ◽  
Liang Xv ◽  
...  

Abstract Background: Gastric cancer is the fourth most common malignant disease. Both CDK10 and long noncoding RNAs (lncRNAs) have been found to exert biological functions in multiple cancers. However, it is still unclear whether CDK10 represses tumor progression in gastric cancer by reducing potential targeting lncRNAs.Methods: The functions of CDK10 and lncRNA-C5ORF42-5 in proliferation, invasion and migration were assessed by MTS assays, colony formation assays, cell cycle and apoptosis assays, Transwell assays, wound healing assays and animal experiments. We used high-throughput sequencing to confirm the existence of lncRNA-C5ORF42-5 and quantitative real-time PCR was used to evaluate lncRNA expression. Then, with RNA-seq sequencing as well as GO function and KEGG enrichment analysis, we identified the signaling pathways in which lncRNA-C5ORF42-5 was involved in gastric cancer. Finally, western blotting was used to identify the genes regulated by lncRNA-C5ORF42-5.Results: Our results showed that CDK10 is expressed at relatively low levels in gastric cancer cell lines and inhibits the progression of gastric cancer cells both in vitro and in vivo. Next, based on high-throughput sequencing, we identified a novel lncRNA, lncRNA-C5ORF42-5, in the stable CDK10-overexpressing cell line compared with the CDK-knockdown cell line and their controls. Additionally, we confirmed that lncRNA-C5ORF42-5 acts as an oncogene to promote metastasis in gastric cancer in vitro and in vivo. We then ascertained that lncRNA-C5ORF42-5 is a major contributor to the function of CDK10 in gastric cancer metastasis by upregulating lncRNA-C5ORF42-5 to reverse the effects of CDK10 overexpression. Finally, we explored the mechanism by which lncRNA-C5ORF42-5 overexpression affects gastric cancer cells to elucidate whether lncRNA-C5ORF42-5 may increase the activity of the SMAD pathway of BMP signaling and promote the expression of EMT-related proteins, such as E-cadherin. Additionally, overexpression of lncRNA-C5ORF42-5 affected the phosphorylation levels of AKT and ERK.Conclusion: Our findings suggest that CDK10 overexpression represses gastric cancer tumor progression by reducing lncRNA-C5ORF42-5 and hindering activation of the related proteins in metastatic signaling pathways, which provides new insight into developing effective therapeutic strategies in the treatment of metastatic gastric cancer.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Huijuan Tang ◽  
Wenjie Huang ◽  
Qiang Yang ◽  
Ying Lin ◽  
Yihui Chen ◽  
...  

Abstract Background The exploration of new therapeutic agents targeting 5-Fu resistance may open a new opportunity to gastric cancer treatment. The objective is to establish a 5-Fu resistant gastric cancer cell line and observe the effect of Jianpi Yangwei decoction (JPYW) on its apoptosis and drug-resistance related proteins. Methods MTT assay was used to measure the effect of JPYW on the BGC823 cells proliferation, and the apoptosis was observed by flow cytometry and Hoechst fluorescence staining. The BGC823 xenograft tumor nude mice models were established, the apoptosis was detected by Tunel method. BGC-823/5-Fu was established by repeated low-dose 5-Fu shocks, the drug resistance index and proliferation were detected by the MTT assay; MDR1 mRNA was detected by real-time RT-PCR; Western blot was used to detect the ratio of p-AKT to AKT; The BGC823/5-Fu xenograft tumor nude mice models were established and apoptosis was measured. The expressions of MRP1, MDR1, ABCG2, AKT, p-AKT, caspase-3 and bcl-2 were detected by immunohistochemistry and the AKT mRNA expression was detected by real-time RT-PCR. Results JPYW induced apoptosis in BGC823 cells; Drug-resistant cell line BGC-823/5-Fu was sucessfully established; JPYW induced apoptosis of BGC823/5-Fu cells, down-regulated the expression of MRP1, MDR1 and ABCG2 in vitro and in vivo, and further decreased MDR1 expression when combined with pathway inhibitor LY294002 (P < 0.05); JPYW down-regulated the ratio of p-AKT to AKT in vitro in a dose-dependent manner, the same as after the combination with LY294002 (P < 0.05). Conclusion JPYW can induce apoptosis of BGC823 and BGC823/5-Fu cells, and down-regulate the expression of MDR1, MRP1, ABCG2 in vitro and in vivo. Its in vitro effect is related to the PI3K/AKT signaling pathway.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e15545-e15545
Author(s):  
Xiangdong Cheng ◽  
Zhiyuan Xu ◽  
Jiahui Chen ◽  
Chunli Zhang ◽  
Jianfa Yu ◽  
...  

e15545 Background: Patients (pts) with late-stage gastric cancer (GC) have a poor prognosis. Targeted agent combined with chemotherapy is expected to yield clinical benefits. Apatinib, a novel tyrosine kinase inhibitor targeting VEGFR-2, improves outcomes in patients with metastatic GC as a third line of treatment. Hence, we aimed to assess the efficacy and safety of apatinib plus chemotherapy in vivo and in vitro. Methods: The MGC803 cell viability was assessed by CCK-8 assay, and the interactions between apatinib and conventional cytotoxic agents revealed by combined index (CI) values were calculated using Calcusyn 2.0 software. We also used a zebrafish embryo xenograft model to validate the synergistic interactions. Furthermore, 4 pts with late-stage GC were enrolled to receive paclitaxel (PTX)/S1 chemotherapy plus apatinib in conversion surgery. Apatinib was administered 500 mg once a day continuously, PTX 130 mg/m2 was given on day 1, and S-1 was administered at 80 mg/m2for 14 consecutive days, followed by 7 days of rest. Treatment was administered for 3-5 cycles, but the last cycle did not include apatinib. Results: Apatinib showed synergistic interactions with both PTX and 5-Fu in vivo (CIs < 1). The zebrafish embryo xenograft model also demonstrated that addition of 0.25 µg/mL apatinib significantly enhanced the tumor growth inhibition effects of 25 (38.39% vs. 11.77%, P < 0.001) and 50 ng/fish (43.58% vs. 17.88%, P < 0.05) 5-Fu, as well as those of 0.75 ng/fish (53.62% vs. 35.22%, P < 0.001) and 1.5 ng/fish (59.71% vs.46.73%, P < 0.01) PTX. Apatinib plus S1/paclitaxel chemotherapy was well tolerable before surgery. Objective response to preoperative SPA treatment was achieved in all pts. No posteroperative bleeding event or wound-healing complication was observed. No postoperative mortality occurred and morbidity was encountered. Pathological examination showed that all pts had grade Ib pathological response. Conclusions: The experimental data suggested that apatinib improves the efficacy of PTX and 5-Fu both in vitro and in vivo. Clinical evidence showed that combination of PTX/S1 chemotherapy with apatinib has promising efficacy and acceptable safety profile in late-stage GC, especially in the conversion surgery.


2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
You Hu ◽  
Bin Yi ◽  
Xin Chen ◽  
Lu Xu ◽  
Xiaojun Zhou ◽  
...  

Gastric cancer (GC) is among the most prevalent causes of cancer-related death globally. MiR-223 has been implicated in a variety of cellular mechanisms linked to cancer progression. However, the miR-223 expressions and its function in GC are unknown. We discovered that miR-223 expression was raised in GC tissues in comparison with nearby normal tissues in this investigation. Additionally, multiplied miR-223 expression was strongly linked with TNM stage ( p = 0.022 ), live metastasis ( p = 0.004 ),lymph node metastasis ( p = 0.004 ),and Borrmann type and was associated with an unfavorable prognostic for patients with GC. Furthermore, suppressing miR-223 significantly increased cell death and prevented cell migration and invasion in vitro. Additionally, miR-223 silencing decreased tumor development in vivo. Additionally, we discovered that miR-223 enhanced GC development by specifically targeting RhoB. In summary, our findings reveal that miR-223 increases tumor progression in GC by targeting RhoB, suggesting that it could serve to be a potential biomarker for the prediction of the disease.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4538-4538
Author(s):  
Rainer Claus ◽  
Philipp Sander ◽  
Dietmar Pfeifer ◽  
Lioudmila Bogatyreva ◽  
Emmanuel Bissé ◽  
...  

Abstract Introduction: Aberrant DNA methylation is frequently found in hematologic malignancies where it is associated with altered gene expression. DNA hypomethylating agents (DNMTi), e.g. 5-aza-2'-deoxycytidine (DAC), are used for both global and gene-specific in vivo demethylation and offer a therapeutic option in myelodysplastic syndromes (MDS) and AML. DNMTi have already been utilized to upregulate suppressed fetal hemoglobin (HbF) in adult patients (pts) suffering from hemoglobinopathies. Here we systematically investigated the potential of DAC for in vitro induction of erythroid differentiation as well as HbF expression in the bipotent myeloid leukemia cell line K562 and in vivo in a clinical treatment situation in MDS pts. Methods and Results: We treated K562 cells with non-toxic concentrations of DAC (100 nM, three 24 hour pulses), hemin (50 nM) and phorbol myristate acetate (PMA, 5 nM). DAC treatment led to morphological changes indicating erythroid but not megakaryocytic differentiation. This was confirmed by benzidine staining where DAC (13% positive cells) and hemin (58%) but not PMA treated cells (0%) became positive for hemoglobin synthesis. Lack of CD41 detection by FACS analysis for DAC and hemin indicated absence of megakaryocytic differentiation. Transcriptome profiling by mRNA expression arrays (Affymetrix GeneChip® HG U133 Plus 2.0) revealed highest similarity between hemin and DAC treatment by unsupervised hierarchical clustering, followed by vehicle control and untreated cells. The transcriptome of PMA treated cells clustered most distantly to all other treatments. Both, DAC and hemin induced moderately balanced up- and downregulation of transcripts to an almost identical extent. 1414 transcripts were >2 fold upregulated and 1505 were >2 fold downregulated upon DAC treatment, whereas 1548 were up- and 2404 were downregulated in hemin treated cells, respectively. The extent of transcriptome dynamics was considerably stronger upon PMA treatment, where 4196 and 3780 transcripts were up- and downregulated, respectively. When intersecting transcriptome changes between the 3 drug treatments (Fig. 1), 368 out of 1548 (23.7%) upregulated transcripts in hemin treated cells were concordantly upregulated upon DAC treatment. The overlap of upregulated transcript was lower compared to PMA treated cells (14.9%). GO analyses of upregulated transcripts identified terms related to erythropoesis and iron metabolism among the top regulated groups of transcripts in DAC treated cells whereas terms related to megakaryocytic differentiation did not show significance. Particularly strong differences of transcripts were observed for a1-, a2-, Ag-, e- and z-globin expression upon DAC and hemin treatment, whereas b- and d-globin were expressed at low levels. These changes were not observed for PMA treated cells. Induction of a- and Ag-globin on mRNA level resulted in enrichment of a- and Ag-globin protein to 15.8% of total cellular protein amount, and consequently in HbF formation in K562 cells as assessed by reversed phase and anion exchange chromatography. HbF levels in peripheral blood were measured from 16 MDS pts, median age 74 years (range 66-78) also treated with a 3-day DAC schedule. Median HbF fraction at baseline was 0.4% (0.1-3.9%) of total hemoglobin with 6 pts (37.5%) exhibiting increased HbF levels (>1%) already before treatment. In 13/16 (81%) pts, increase of HbF with a median increment of 1.2% (range 0.3-3.7%) was observed. In 3 pts, HbF decreased over the treatment course. Median number of courses until maximum increment was 3 (2-6). HbF levels in 2 pts with AML and 1 with pancreatic cancer treated with nucleoside analogues without demethylating activity (cytosine arabinoside and gemcitabine, respectively) according to standard chemotherapy protocols served as control group and did not show comparable increments. Conclusions: We describe an erythroid differentiation program, from transcriptome level to HbF protein formation, induced by the hypomethylating agent DAC in the bipotent cell line K562. This DAC-mediated differentiation process is specific for erythropoesis but not megakaryopoesis. This is substantiated by in vivo upregulation of HbF upon DAC adminstration in MDS pts. Therefore, we propose to utilize HbF expression as potential biomarker during DAC treatment. Figure 1. Intersection of >2 fold upregulated transcripts in K562 cells upon drug treatment. Figure 1. Intersection of >2 fold upregulated transcripts in K562 cells upon drug treatment. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4069-4069
Author(s):  
Wenyu Shi ◽  
Jian-Yong Li

Anaplastic large cell lymphoma (ALCL) is a type of CD30-expressing non-Hodgkin's lymphoma (NHL), which accounts for 2% to 3% of adult non-Hodgkin's lymphoma,accounting for 15% to 30% of children with large cell lymphoma. Anaplastic lymphoma kinase (ALK) positive ALCL is highly invasive, and currently it is generally based on CHOP combined with chemotherapy. The proportion of patients with complete relief of symptoms is as high as 90%, but the proportion of recurrence is also as high as 40%. Crizotinib is the first generation of ALK inhibitors that have been approved for the treatment of ALK+ ALCL. Unfortunately, most patients treated with crizotinib relapse after a significant initial response. The median progression-free survival of clinical trials was 10.5 months. Various mutations in the ALK kinase domain and amplification of the ALK gene copy number, activation of the alternative pathway, and tumor heterogeneity are major causes of crizotinib resistance. Studies have shown that IGF-1R interacts with NPM-ALK to promote ALK+ALCL transformation, proliferation and migration. GSK is a small molecule kinase inhibitor that inhibits both IGF-IR and ALK. Therefore, GSK with simultaneous inhibition of the bidirectional potential of IGF-IR and ALK has a promising prospect in the targeted therapy of NPM-ALK+ALCL. This study explored the inhibitory effects of GSK on NPM-ALK+ALCL and crizotinib-resistant NPM-ALK+ALCL by in vivo and in vitro experiments. In vitro experiments: The sensitivity of ALCL cell line to GSK1838705a was detected by CCK8 and flow cytometry. The expression of phosphorylation of IGF-1R and NPM-ALK signaling pathway in Karpas299 and SR786 cell lines stimulated by GSK was detected by WB method. In order to study the crizotinib resistance mutation, we established ALK+ALCL crizotinib-resistant cell lines Karpas299-R and SR786-R, and identified the resistance of Karpas299-R and SR786-R cell lines by CCK8 and flow cytometry. The drug-resistant and non-resistant strains were stimulated with gradient concentrations of crizotinib and gradient GSK, and the IC50 of the two were compared by CCK8. The WB method was used to compare the phosphorylation levels of downstream signaling pathways in drug-resistant and non-resistant strains. In vivo experiment: The ALK+ALCL and resistant-ALK+ALCL mouse model was established, and three groups of mice treated with control, GSK single drug 30 mg/kg, GSK single drug 60 mg/kg, were established. The tumor volume and body weight of the four groups were compared. Immunohistochemistry was used to compare the expression levels of key signaling molecules and apoptotic proteins in each group. SPSS statistical software draws survival curves. As the concentration of GSK gradually increases, the survival rate of ALCL cells gradually decreases. The expression of pIGF-1R, pNPM-ALK, pSTAT3, pAKT, casepase3 and other molecules decreased in the downstream signaling pathway, and the expression level of cleaved-casepase3 increased.In the crizotinib-resistant cell line, with the increase of the concentration of GSK, the apoptosis rate of the cells increased and the phosphorylation level of the downstream molecules gradually decreased. Tumor volume of three groups of mouse models: control>GSK single drug 30 mg/kg>GSK single drug 60 mg/kg. Immunohistochemistry results showed that the expression level of key signaling molecules in GSK-treated CHOP-treated mice decreased, and the expression level of apoptotic proteins increased. In this research, we explored the effects of GSK1838705A on proliferation, apoptosis, and clonogenesis of ALCL cell lines. Subsequently, we established a crizotinib-resistant cell line and noticed that GSK1838705A can effectively reduce the viability of resistant ALCL cells and significantly restrain the transmission of downstream survival signaling pathways induced by IGF1R/IR phosphorylation. Besides, we discovered that GSK1838705A inhibited the development of both crizotinib-sensitive and crizotinib-resistant ALCL tumors in the ALCL mouse model established by subcutaneous tumorigenesis. Based on the results of previous clinical trials, we put forward to use GSK1838705A as an alternative treatment strategy to overcome crizotinib-resistant ALCL. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Xinglong Dai ◽  
Jianjun Liu ◽  
Xiong Guo ◽  
Anqi Cheng ◽  
Xiaoya Deng ◽  
...  

Background: Mounting evidence has displayed critical roles of circular RNAs (circRNAs) in multiple cancers. The underlying mechanisms by which circFGD4 contributed to gastric cancer (GC) are still unclear. Methods: The levels and clinical values of circFGD4 in GC patients were detected and analysed by quantitative real-time PCR. The biological roles of circFGD4 in GC were assessed in vitro and in vivo experiments. Dual-luciferase reporter, fluorescence in situ hybridization, RNA immunoprecipitation, biotin-coupled RNA pull-down, and TOP/Flash and FOP/Flash reporter gene assays were employed to evaluate the effects of circFGD4 on miR-532-3p-mediated adenomatous polyposis coli (APC)/β-catenin signalling in GC cells. Results: circFGD4 expression was down-regulated the most in human GC tissues and cell lines. Low expression of circFGD4 was correlated with poor tumour differentiation, lymphatic metastasis, and poor prognosis of GC patients. circFGD4 suppressed GC cell viability, colony formation, migration, induced epithelial-mesenchymal transition (EMT) and tumorigenesis and metastasis in vivo. Next, we validated that circFGD4 acted as a sponge of miR-532-3p to relieve the tumour-promoting effects of miR-532-3p on its target APC. The mechanistic analysis demonstrated that the circFGD4 suppressed GC cell viability, migration, and EMT by modulating the miR-532-3p/APC axis to inactivate the β-catenin signalling. Conclusion: circFGD4 suppressed GC progression through sponging miR-532-3p and enhancing APC expression to inactivate the β-catenin signalling. Thus circFGD4 provides a novel potential biomarker and valuable therapeutic strategy for GC.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Lin Tu ◽  
Enhao Zhao ◽  
Wenyi Zhao ◽  
Zizhen Zhang ◽  
Defeng Tang ◽  
...  

Background. In recent studies, aberrant expression of various microRNAs (miRNAs) is reported to be associated with gastric cancer metastasis.Method. Overexpression construct and inhibitor of hsa-miR-376c-3p were expressed in human gastric adenocarcinoma cell line SGC-7901. The expression level of tumor related genes was detected by qPCR, western blot, and immunostaining. Cell apoptosis was determined by flow cytometry. Xenograft of SGC-7901 cells was used to elucidate the function of hsa-miR-376c-3p in gastric tumor growthin vivo.Result. Expression of hsa-miR-376c-3p was detected in SGC-7901 cells. Downregulation of hsa-miR-376c-3p increased the expression level of BCL-2 and decreased the expression of smad4 and BAD. On the contrary, overexpression of hsa-miR-376c-3p increased the expression of BAD and smad4, while it led to the decreasing expression level of BCL-2. Overexpression of hsa-miR-376c-3p also promoted cell apoptosisin vitroand inhibited gastric tumor growthin vivo. Furthermore, the expression of BCL-2 was higher and expression of smad4 and BAD was lower in tumor tissue than the tissue adjacent to tumor from gastric cancer patients.Conclusion. This study demonstrated that hsa-miR-376c-3p plays an important role in the inhibition of gastric tumor growth and tumor related gene expression bothin vitroandin vivo.


2020 ◽  
Author(s):  
Weilin Sun ◽  
Jingyu Deng ◽  
Gang Ma ◽  
Li Zhang ◽  
Pengliang Wang ◽  
...  

Abstract BACKGROUND: A disintegrin-like and metalloprotease with thrombospondin type 1 motif 9 (ADAMTS9) is hypermethylated and inhibits the proliferation of various cancers. In this study, we demonstrated that the expression of ADAMTS9 was associated with the lymphatic metastasis of gastric cancer (GC) and elucidated the down- and upstream molecular pathways in GC progression.METHODS: The study explored the expression level, biological function, clinical application, and involved molecular mechanism of ADAMTS9 in GC.RESULTS: In 135 GC tissue samples, ADAMTS9 expression level was significantly correlated with the pN stage, the number of metastatic lymph nodes (LNs), and the overall survival of patients with GC. The in vitro and in vivo experiments showed that ADAMTS9 attenuated the viability and motile capacity of GC cells. Mechanistic investigations revealed that ADAMTS9 significantly inhibited the transcription of C–C motif chemokine ligand 5 (CCL5)/C–X–C motif chemokine ligand 11 (CXCL11). This effect impaired the migration and invasion in GC cells. This study revealed that the hypermethylation level in the promotor of ADAMTS9 gene was mainly mediated by DNA-methyltransferase(DNMT) 3A, which reduces ADAMTS9 expression in GC. Ring finger protein (RNF) 180 could promote DNMT3Aubiquitination and degradation, thereby restoring the ADAMTS9 expression in GC cells.CONCLUSIONS: ADAMTS9 expression is restored by the RNF180 via suppressing the promotor methylation of the ADAMTS9 gene. ADAMTS9 inhibits metastasis and improves the prognosis of patients with GC via CCL5/CXCL11-dependent pathway. Thus, ADAMTS9 should be considered as a predictor of LN metastasis and a therapeutic target in GC.


Sign in / Sign up

Export Citation Format

Share Document