scholarly journals Climate change in MATOPIBA region of Brazil using Thornthwaite (1948) classification

Author(s):  
LUCAS Eduardo OLIVEIRA-APARECIDO ◽  
Alexson Filgueiras Dutra ◽  
Pedro Antonio Lorençone ◽  
Francisco de Alcântara Neto ◽  
João Antonio Lorençon ◽  
...  

Abstract Identify the climatic characterization of a region and its spatial and temporal variation, as well as its changes in the face of climate change events, is essential for agrometeorological studies because they can assist in the planning of strategies that reduce the negative impacts generated in the cultures exposed to critical climatic conditions. Thus, this study aimed to characterize the climatic conditions of the MATOPIBA region and its changes in scenarios of climate change using the classification index of Thornthwaite (1948). Daily time series of rainfall and temperature data in the 1950–1990 period were used, arranged in a 0.25º × 0.25º grid, covering 467 points over the studied region. The data set was used to estimate climatological water balance and climate index Thornthwaite (1948), and obtain the trends climatological according to IPCC (2014) climate change projections, with changes in the average air temperature (+ 1.5°C and − 1.5°C) and precipitation (+ 30% and − 30%). The MATOPIBA region is characterized by its humid, dry subhumid, and Moist subhumid climate, with the rainy seasons, between October and April, and drought, from May to September, well defined. In MATOPIBA climate change scenarios, climatic extreme indices tend to alter the pattern, frequency, and distribution of climate class, which can increase climate risk and impact crop production. Therefore, the results obtained can be used to develop strategies to mitigate the vulnerability of crops to climate change conditions.

NeoBiota ◽  
2020 ◽  
Vol 58 ◽  
pp. 129-160
Author(s):  
Anna Schertler ◽  
Wolfgang Rabitsch ◽  
Dietmar Moser ◽  
Johannes Wessely ◽  
Franz Essl

The coypu (Myocastor coypus) is a semi-aquatic rodent native to South America which has become invasive in Europe and other parts of the world. Although recently listed as species of European Union concern in the EU Invasive Alien Species Regulation, an analysis of the current European occurrence and of its potential current and future distribution was missing yet. We collected 24,232 coypu records (corresponding to 25,534 grid cells at 5 × 5 km) between 1980 and 2018 from a range of sources and 28 European countries and analysed them spatiotemporally, categorising them into persistence levels. Using logistic regression, we constructed consensus predictions across all persistence levels to depict the potential current distribution of the coypu in Europe and its change under four different climate scenarios for 2041–2060. From all presence grid cells, 45.5% showed at least early signs of establishment (records temporally covering a minimum of one generation length, i.e. 5 years), whereas 9.8% were considered as containing established populations (i.e. three generation lengths of continuous coverage). The mean temperature of the warmest quarter (bio10), mean diurnal temperature range (bio2) and the minimum temperature of the coldest month (bio6) were the most important of the analysed predictors. In total, 42.9% of the study area are classified as suitable under current climatic conditions, of which 72.6% are to current knowledge yet unoccupied; therefore, we show that the coypu has, by far, not yet reached all potentially suitable regions in Europe. Those cover most of temperate Europe (Atlantic, Continental and Pannonian biogeographic region), as well as the coastal regions of the Mediterranean and the Black Sea. A comparison of the suitable and occupied areas showed that none of the affected countries has reached saturation by now. Under climate change scenarios, suitable areas will slightly shift towards Northern regions, while a general decrease in suitability is predicted for Southern and Central Europe (overall decrease of suitable areas 2–8% depending on the scenario). Nevertheless, most regions that are currently suitable for coypus are likely to be so in the future. We highlight the need to further investigate upper temperature limits in order to properly interpret future climatic suitability for the coypu in Southern Europe. Based on our results, we identify regions that are most at risk for future invasions and provide management recommendations. We hope that this study will help to improve the allocation of efforts for future coypu research and contribute to harmonised management, which is essential to reduce negative impacts of the coypu and to prevent further spread in Europe.


2020 ◽  
Author(s):  
Matti Kummu ◽  
Matias Heino ◽  
Maija Taka ◽  
Olli Varis ◽  
Daniel Viviroli

<p>The majority of global food production, as we know it, is based on agricultural practices developed within stable Holocene climate conditions. Climate change is altering the key conditions for human societies, such as precipitation, temperature and aridity. Their combined impact on altering the conditions in areas where people live and grow food has not yet, however, been systematically quantified on a global scale. Here, we estimate the impacts of two climate change scenarios (RCP 2.6, RCP 8.5) on major population centres and food crop production areas at 5 arc-min scale (~10 km at equator) using Holdridge Life Zones (HLZs), a concept that incorporates all the aforementioned climatic characteristics. We found that if rapid growth of GHG emissions is not halted (RCP 8.5), in year 2070, one fifth of the major food production areas and one fourth of the global population centres would experience climate conditions beyond the ones where food is currently produced, and people are living. Our results thus reinforce the importance of following the RCP 2.6 path, as then only a small fraction of food production (5%) and population centres (6%) would face such unprecedented conditions. Several areas experiencing these unprecedented conditions also have low resilience, such as those within Burkina Faso, Cambodia, Chad, and Guinea-Bissau. In these countries over 75% of food production and population would experience unprecedented climatic conditions under RCP 8.5. These and many other hotspot areas require the most urgent attention to secure sustainable development and equity.</p>


2021 ◽  
Vol 13 (19) ◽  
pp. 10495
Author(s):  
Zoia Arshad Awan ◽  
Tasneem Khaliq ◽  
Muhammad Masood Akhtar ◽  
Asad Imran ◽  
Muhammad Irfan ◽  
...  

Cotton production is highly vulnerable to climate change, and heat stress is a major constraint in the cotton zone of Punjab, Pakistan. Adaptation is perceived as a critical step to deal with forecasted and unexpected climatic conditions. The objective of this study was to standardize and authenticate a cotton crop model based on climate and crop husbandry data in order to develop an adaptation package for cotton crop production in the wake of climate change. For the study, the data were collected from the cotton-growing areas of Punjab, viz. Bahawalpur and Khanewal. After the calibration and validation against field data, the Cropping System Model CSM–CROPGRO–Cotton in the shell of the decision support system for agro-technology transfer (DSSAT) was run with a future climate generated under two representative concentrations pathways (RCPs), viz. RCPs 4.5 and 8.5 with five global circulation models (GCMs). The whole study showed that a model is an artistic tool for examining the temporal variation in cotton and determining the potential impact of planting dates on crop growth, phenology, and yield. The results showed that the future climate would have drastic effects on cotton production in the project area. Reduction in seed cotton yield (SCY) was 25.7% and 32.2% under RCPs 4.5 and 8.5, respectively. The comparison of five GCMs showed that a hot/wet climate would be more damaging than other scenarios. The simulations with different production options showed that a 10% and 5% increase in nitrogen and plant population, respectively, compared to the present would be the best strategy in the future. The model further suggested that planting conducted 15 days earlier, combined with the use of water and nitrogen (fertigation), would help to improve yield with 10% less water under the future climate. Overall, the proposed adaptation package would help to recover 33% and 37% of damages in SCY due to the climate change scenarios of RCP 4.5 and 8.5, respectively. Furthermore, the proposed package would also help the farmers increase crop yield by 7.5% over baseline (current) yield.


2020 ◽  
Vol 8 ◽  
Author(s):  
Pablo Medrano-Vizcaíno ◽  
Patricia Gutiérrez-Salazar

Nasuella olivacea is an endemic mammal from the Andes of Ecuador and Colombia. Due to its rarity, aspects about its natural history, ecology and distribution patterns are not well known, therefore, research is needed to generate knowledge about this carnivore and a first step is studying suitable habitat areas. We performed Ecological Niche Models and applied future climate change scenarios (2.6 and 8.5 RCP) to determine the potential distribution of this mammal in Colombia and Ecuador, with current and future climate change conditions; furthermore, we analysed its distribution along several land covers. We found that N. olivacea is likely to be found in areas where no records have been reported previously; likewise, climate change conditions would increase suitable distribution areas. Concerning land cover, 73.4% of N. olivacea potential distribution was located outside Protected Areas (PA), 46.1% in Forests and 40.3% in Agricultural Lands. These findings highlight the need to further research understudied species, furthering our understanding about distribution trends and responses to changing climatic conditions, as well as informig future PA designing. These are essential tools for supporting wildlife conservation plans, being applicable for rare species whose biology and ecology remain unknown.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Dan-Dan Yu ◽  
Shan Li ◽  
Zhong-Yang Guo

The evaluation of climate comfort for tourism can provide information for tourists selecting destinations and tourism operators. Understanding how climate conditions for tourism evolve is increasingly important for strategic tourism planning, particularly in rapidly developing tourism markets like China in a changing climate. Multidimensional climate indices are needed to evaluate climate for tourism, and previous studies in China have used the much criticized “climate index” with low resolution climate data. This study uses the Holiday Climate Index (HCI) and daily data from 775 weather stations to examine interregional differences in the tourist climate comfortable period (TCCP) across China and summarizes the spatiotemporal evolution of TCCP from 1981 to 2010 in a changing climate. Overall, most areas in China have an “excellent” climate for tourism, such that tourists may visit anytime with many choices available. The TCCP in most regions shows an increasing trend, and China benefits more from positive effects of climate change in climatic conditions for tourism, especially in spring and autumn. These results can provide some scientific evidence for understanding human settlement environmental constructions and further contribute in improving local or regional resilience responding to global climate change.


Land ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 35 ◽  
Author(s):  
Mwangi Githiru ◽  
Josephine Njambuya

Protected areas are considered the cornerstone of biodiversity conservation, but face multiple problems in delivering this core objective. The growing trend of framing biodiversity and protected area values in terms of ecosystem services and human well-being may not always lead to biodiversity conservation. Although globalization is often spoken about in terms of its adverse effects to the environment and biodiversity, it also heralds unprecedented and previously inaccessible opportunities linked to ecosystem services. Biodiversity and related ecosystem services are amongst the common goods hardest hit by globalization. Yet, interconnectedness between people, institutions, and governments offers a great chance for globalization to play a role in ameliorating some of the negative impacts. Employing a polycentric governance approach to overcome the free-rider problem of unsustainable use of common goods, we argue here that REDD+, the United Nations Framework Convention on Climate Change (UNFCCC) climate change mitigation scheme, could be harnessed to boost biodiversity conservation in the face of increasing globalization, both within classic and novel protected areas. We believe this offers a timely example of how an increasingly globalized world connects hitherto isolated peoples, with the ability to channel feelings and forces for biodiversity conservation. Through the global voluntary carbon market, REDD+ can enable and empower, on the one hand, rural communities in developing countries contribute to mitigation of a global problem, and on the other, individuals or societies in the West to help save species they may never see, yet feel emotionally connected to.


2012 ◽  
Vol 151 (3) ◽  
pp. 303-321 ◽  
Author(s):  
P. PELTONEN-SAINIO ◽  
A. HANNUKKALA ◽  
E. HUUSELA-VEISTOLA ◽  
L. VOUTILA ◽  
J. NIEMI ◽  
...  

SUMMARYCrop-based protein self-sufficiency in Finland is low. Cereals dominate the field cropping systems in areas that are also favourable for legumes and rapeseed. The present paper estimated the realistic potential for expanding protein crop production taking account of climatic conditions and constraints, crop rotation requirements, field sizes, soil types and likelihood for compacted soils in different regions. The potential for current expansion was estimated by considering climate change scenarios for 2025 and 2055. By using actual regional mean yields for the 2000s, without expecting any yield increase during the expansion period (due to higher risks of pests and diseases), potential production volumes were estimated. Since rapeseed, unlike grain legumes, is a not a true minor crop, its expansion potential is currently limited. Thus, most potential is from the introduction of legumes into cropping systems. The current 100000 ha of protein crops could be doubled, and areas under cultivation could reach 350000 and 390000 ha as a result of climate warming by 2025 and 2055, respectively. Such increases result mainly from the longer growing seasons projected for the northern cropping regions of Finland. Self-sufficiency in rapeseed could soon increase from 0·25 to 0·32, and then to 0·50 and 0·60 by 2025 and 2055, respectively. If legume production expands according to its potential, it could replace 0·50–0·60 of currently imported soybean meal, and by 2025 it could replace it completely. Replacement of soybean meal is suitable for ruminants, but it presents some problems for pig production, and is particularly challenging for poultry.


2015 ◽  
Vol 49 (6) ◽  
Author(s):  
Savita Ahlawat ◽  
Dhian Kaur

At present, climate change is one of the most challenging environmental issues as it poses potential threat to different sectors of economy at global level. Agriculture being an open activity is primarily dependent on climatic factors and change in climatic conditions affects the production, quality and quantity of crop production in an area. This paper attempts to study effects of only two parameters of climate i.e. temperature and rainfall on agricultural production in northwest region of India. Northwest region comprising of Punjab, Haryana, Himachal Pradesh and Jammu Kashmir states is the greatest food bowl of India contributing to its food security. The analysis of mean monthly rainfall and maximum and minimum temperatures (1901-2006) shows no significant change in temperature and rainfall conditions from 1901 to 1960; but afterward the change is more pronounced. On the whole any significant change in climatic conditions will not only challenge the food production of the region but also challenge the country’s food security situation.


2007 ◽  
Vol 97 (4) ◽  
pp. 369-378 ◽  
Author(s):  
A.E.A. Stephens ◽  
D.J. Kriticos ◽  
A. Leriche

AbstractThe oriental fruit fly,Bactrocera dorsalis(Hendel), is a major pest throughout South East Asia and in a number of Pacific Islands. As a result of their widespread distribution, pest status, invasive ability and potential impact on market access,B. dorsalisand many other fruit fly species are considered major threats to many countries. CLIMEX™ was used to model the potential global distribution ofB. dorsalisunder current and future climate scenarios. Under current climatic conditions, its projected potential distribution includes much of the tropics and subtropics and extends into warm temperate areas such as southern Mediterranean Europe. The model projects optimal climatic conditions forB. dorsalisin the south-eastern USA, where the principle range-limiting factor is likely to be cold stress. As a result of climate change, the potential global range forB. dorsalisis projected to extend further polewards as cold stress boundaries recede. However, the potential range contracts in areas where precipitation is projected to decrease substantially. The significant increases in the potential distribution ofB. dorsalisprojected under the climate change scenarios suggest that the World Trade Organization should allow biosecurity authorities to consider the effects of climate change when undertaking pest risk assessments. One of the most significant areas of uncertainty in climate change concerns the greenhouse gas emissions scenarios. Results are provided that span the range of standard Intergovernmental Panel on Climate Change scenarios. The impact on the projected distribution ofB. dorsalisis striking, but affects the relative abundance of the fly within the total suitable range more than the total area of climatically suitable habitat.


Sign in / Sign up

Export Citation Format

Share Document