Bi-Layered Disulfiram-Loaded Fiber Membranes With Antibacterial Properties for Wound Dressing

Author(s):  
Chenchen Xie ◽  
Jin Yan ◽  
Siyuan Cao ◽  
Ri Liu ◽  
Baishun Sun ◽  
...  

Abstract In this study, the bi-layered disulfiram-loaded fiber membranes with antibacterial activity and different surface wettabilities are prepared using electrospinning technology. In the application of wound dressing, the hydrophilic surface of fiber membranes is beneficial for the cell adhesion and drug release to heal the wound, meanwhile the hydrophobic outside surface is able to block water penetration to reduce the probability of wound infection. The obtained bi-layered drug-loaded fiber membranes are composed of polyvinylidene fluoride (PVDF) bottom surface and disulfiram (DSF)/polylactic acid (PLA) top surface. To modify the top surface wettability, the oxygen plasma modification of bi-layered membranes was carried out. We analyzed the morphology, wettability and chemical compositions of bi-layered drug-loaded fiber membranes by various techniques. And the bi-layered disulfiram-loaded membranes showed potent antibacterial activity in vitro against both Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive). Thus, the obtained bi-layered disulfiram-loaded fiber membranes are very suitable for wound dressings application.

Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2168
Author(s):  
Ibrahim N. Amirrah ◽  
Mohd Farhanulhakim Mohd Razip Wee ◽  
Yasuhiko Tabata ◽  
Ruszymah Bt Hj Idrus ◽  
Abid Nordin ◽  
...  

Diabetic foot ulcer (DFU) is a chronic wound frequently delayed from severe infection. Wound dressing provides an essential barrier between the ulcer and the external environment. This review aimed to analyse the effectiveness of antibacterial collagen-based dressing for DFU treatment in a clinical setting. An electronic search in four databases, namely, Scopus, PubMed, Ovid MEDLINE(R), and ISI Web of Science, was performed to obtain relevant articles published within the last ten years. The published studies were included if they reported evidence of (1) collagen-based antibacterial dressing or (2) wound healing for diabetic ulcers, and (3) were written in English. Both randomised and non-randomised clinical trials were included. The search for relevant clinical studies (n) identified eight related references discussing the effectiveness of collagen-based antibacterial wound dressings for DFU comprising collagen impregnated with polyhexamethylene biguanide (n = 2), gentamicin (n = 3), combined-cellulose and silver (n = 1), gentian violet/methylene blue mixed (n = 1), and silver (n = 1). The clinical data were limited by small sample sizes and multiple aetiologies of chronic wounds. The evidence was not robust enough for a conclusive statement, although most of the studies reported positive outcomes for the use of collagen dressings loaded with antibacterial properties for DFU wound healing. This study emphasises the importance of having standardised clinical trials, larger sample sizes, and accurate reporting for reliable statistical evidence confirming DFU treatment efficiency.


2021 ◽  
Vol 29 (9_suppl) ◽  
pp. S1403-S1413
Author(s):  
Mehdi Varsei ◽  
Nadia Rahimi Tanha ◽  
Mohsen Gorji ◽  
Saeedeh Mazinani

Anti-infection ability and desirable air permeability (AP) are the important aspects of wound dressings that should be regulated with regard to primary polymers and antibacterial agents. This study aims to fabricate and optimize a wound dressing with antibacterial properties. For this purpose, polycaprolactone (PCL) as a hydrophobic polymer and polyvinylpyrrolidone (PVP) as a hydrophilic polymer were electrospun with Lawsonia inermis (Henna) extract as an antibacterial component based on the experiments proposed by Design-Expert software. The morphology and properties of the wound dressing were studied by scanning electron microscopy, Fourier transform infrared, and AP. The response surface method (RSM) was used to determine the optimal fiber diameter and AP of the samples as a function of the polymer concentration and feed rate. The optimal PCL/PVL/Henna wound dressing has antibacterial properties against Gram-positive and Gram-negative bacteria while being biocompatible according to the MTT assay. These fibrous structures can be used as a wound dressing to prevent infection and accelerate wound healing; thanks to proper Henna release, breathability, swelling ratio, and mechanical performance.


Nanomaterials ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 525 ◽  
Author(s):  
Yu Chen ◽  
Weipeng Lu ◽  
Yanchuan Guo ◽  
Yi Zhu ◽  
Yeping Song

Traditional wound dressings require frequent replacement, are prone to bacterial growth and cause a lot of environmental pollution. Therefore, biodegradable and antibacterial dressings are eagerly desired. In this paper, gelatin/ZnO fibers were first prepared by side-by-side electrospinning for potential wound dressing materials. The morphology, composition, cytotoxicity and antibacterial activity were characterized by using Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), particle size analyzer (DLS), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), thermogravimetry (TGA) and Incucyte™ Zoom system. The results show that ZnO particles are uniformly dispersed on the surface of gelatin fibers and have no cytotoxicity. In addition, the gelatin/ZnO fibers exhibit excellent antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) with a significant reduction of bacteria to more than 90%. Therefore, such a biodegradable, nontoxic and antibacterial fiber has excellent application prospects in wound dressing.


2020 ◽  
Vol 9 (1) ◽  
pp. 1576-1585
Author(s):  
Yan Kong ◽  
Xiaoxuan Tang ◽  
Yahong Zhao ◽  
Xiaoli Chen ◽  
Ke Yao ◽  
...  

Abstract The performance of wound dressing determines the effect of wound closure and recovery. Water absorption and bacteriostasis of wound dressings play an important role in wound recovery and healing. In this study, an optimized chitosan wound dressing-tough chitosan dressing (TCS) with high water absorption, high bacteriostasis, and degradability was developed. The chemical structure of chitosan remained stable during the process of optimized treatment, and an increase in mechanical properties was obtained for the dressing. After optimization, the water absorption and antibacterial properties of the chitosan dressing were greatly improved, which is significantly better than sodium alginate dressing. The authors believe that TCS dressing with high hygroscopicity and high bacteriostasis has great potential application value in the field of wound recovery and healing.


RSC Advances ◽  
2021 ◽  
Vol 11 (48) ◽  
pp. 30156-30171
Author(s):  
William Xaveriano Waresindo ◽  
Halida Rahmi Luthfianti ◽  
Dhewa Edikresnha ◽  
Tri Suciati ◽  
Fatimah Arofiati Noor ◽  
...  

A polyvinyl alcohol (PVA) hydrogel loaded with guava leaf extract (GLE) has potential applications as a wound dressing with good antibacterial activity.


2022 ◽  
Vol 30 ◽  
pp. 096739112110631
Author(s):  
Azin Paydayesh ◽  
Leyla Heleil ◽  
Arezoo Sh Dadkhah

In recent years, polymeric hydrogels are widespread in the field of biological materials such as wound dressing and wound care. In this work, we report for the first time the preparation and application of pHEMA nanocomposite hydrogels containing iron oxide nanoparticles as wound dressings. For this purpose, nanocomposite hydrogels based on poly (hydroxyl ethyl methacrylate) (pHEMA) and various amounts of 5, 10, and 15 wt% iron oxide nanoparticles were successfully prepared via radical polymerization. The structure and morphology of nanocomposite hydrogels were determined by Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscope (FE-SEM), respectively. The results of gel fraction and the degree of swelling of hydrogels demonstrated that the gel percentage of pHEMA increased, and the degree of swelling decreased with increasing the percentage of nanoparticles. The WVRT and the porosity of hydrogels decreased by increasing the quantity of nanoparticles and were suitable for wound dressing applications. The effect of iron oxide nanoparticles on the mechanical properties of nanocomposite hydrogels was also studied using compression test and hardness shore A durometer. The results indicated that the compression strength, modulus, strain, and hardness are steadily increasing compared to pure hydrogel by adding nanoparticles. The maximum increase was obtained for a hydrogel sample with 15 wt% iron oxide nanoparticles. Antibacterial properties and biocompatibility were determined by the disk-diffusion and MTT assay methods, respectively. Based on the results, nanocomposite hydrogels exhibited higher percentages of cell survival and better antibacterial properties compared to pure pHEMA.


2018 ◽  
Vol 89 (17) ◽  
pp. 3506-3518 ◽  
Author(s):  
Jin Jeong ◽  
Seungsin Lee

Coptidis Rhizoma is a medicinal plant that is well known for its high antibacterial activity against various pathogens and its anti-inflammatory, antioxidant, and hemostatic effects. Here, nanofibrous membranes containing 10, 20, and 30 wt% of Coptidis Rhizoma extracts were fabricated by electrospinning using poly(vinyl alcohol) as the drug carrier and thermally treated to increase their aqueous stability. The antibacterial properties and release characteristics of Coptidis Rhizoma nanofibrous membranes were investigated. Coptidis Rhizoma-loaded nanocomposite fibers exhibited a high drug-loading efficiency ranging from 92% to 97%. The release profile from the nanofibrous membranes of Coptidis Rhizoma showed an initial fast release followed by a gradual release for 48 h. High antibacterial activity of the Coptidis Rhizoma-loaded nanofibrous membranes was exhibited against both Staphylococcus aureus and Staphylococcus epidermidis. These results demonstrate that poly(vinyl alcohol) nanofibrous membranes containing Coptidis Rhizoma extracts have considerable potential to be effective antimicrobial wound dressings based on natural substances.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 236
Author(s):  
Naveed Ahmad ◽  
Muhammad Masood Ahmad ◽  
Nabil K. Alruwaili ◽  
Ziyad Awadh Alrowaili ◽  
Fadhel Ahmed Alomar ◽  
...  

Wound infections are one of the major reasons for the delay in the healing of chronic wounds and can be overcome by developing effective wound dressings capable of absorbing exudate, providing local antibiotic release, and improving patient comfort. Arabinoxylan (AX) is a major hemicellulose present in psyllium seed husk (PSH) and exhibits promising characteristics for developing film dressings. Herein, AX-gelatin (GL) films were prepared by blending AX, gelatin (GL), glycerol, and gentamicin (antibiotic). Initially, the optimal quantities of AX, GL, and glycerol for preparing transparent, bubble-free, smooth, and foldable AX-GL films were found. Physiochemical, thermal, morphological, drug release, and antibacterial characteristics of the AX-GL films were evaluated to investigate their suitability as wound dressings. The findings suggested that the mechanical, water vapor transmission, morphological, and expansion characteristics of the optimized AX-GL films were within the required range for wound dressing. The results of Fourier-transform infrared (FTIR) analyses suggested chemical compatibility among the ingredients of the films. In in vitro drug release and antibacterial activity experiments, gentamicin (GM)-loaded AX-GL films released approximately 89% of the GM in 24 h and exhibited better antibacterial activity than standard GM solution. These results suggest that AX-GL films could serve as a promising dressing to protect against wound infections.


Author(s):  
Sadjad Khosravimelal ◽  
Milad Chizari ◽  
Behrouz Farhadihosseinabadi ◽  
Mehrdad Moosazadeh Moghaddam ◽  
Mazaher Gholipourmalekabadi

AbstractWound infections are still problematic in many cases and demand new alternatives for current treatment strategies. In recent years, biomaterials-based wound dressings have received much attention due to their potentials and many studies have been performed based on them. Accordingly, in this study, we fabricated and optimized an antibacterial chitosan/silk fibroin (CS/SF) electrospun nanofiber bilayer containing different concentrations of a cationic antimicrobial peptide (AMP) for wound dressing applications. The fabricated CS/SF nanofiber was fully characterized and compared to the electrospun silk fibroin and electrospun chitosan alone in vitro. Then, the release rate of different concentrations of peptide (16, 32, and 64 µg/ml) from peptide-loaded CS/SF nanofiber was investigated. Finally, based on cytotoxic activity, the antibacterial activity of scaffolds containing 16 and 32 µg/ml of the peptide was evaluated against standard and multi-drug resistant strains of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa isolated from burn patients. The peptide-loaded CS/SF nanofiber displayed appropriate mechanical properties, high water uptake, suitable biodegradation rate, a controlled release without cytotoxicity on Hu02 human foreskin fibroblast cells at the 16 and 32 µg/ml concentrations of peptide. The optimized CS/SF containing 32 μg/ml peptide showed strong antibacterial activity against all experimental strains from standard to resistance. The results showed that the fabricated antimicrobial nanofiber has the potential to be applied as a wound dressing for infected wound healing, although further studies are needed in vivo.


Sign in / Sign up

Export Citation Format

Share Document