scholarly journals Chest X-ray scanning based detection of COVID-19 using deepconvolutional neural network

2020 ◽  
Author(s):  
Samir Yadav ◽  
Jasminder Kaur Sandhu ◽  
Yadunath Pathak ◽  
Shivajirao Jadhav

Abstract Everyone’s life on earth influenced by a global coronavirus outbreak COVID- 19. Two regular practices, pathology tests, and Computer Tomography (CT) scan used to diagnose COVID-19. Pathology tests produce a considerable amount of false-positives & are time-consuming, whereas CT scans tests are costly and require expert advice. Hence, the main aim of this work is to develop a fast, accurate, and low-cost diagnostic system for detection of COVID-19 using inexpensive chest X-rays and the modern Deep Convolutional Neural Network(CNN) approach to assist medical professionals. In this study, two pre-trained CNN models (VGG16 and InceptionV3) are evaluated by several experiments using data augmentations. The analysis is based on 2905 images of chest X-rays with 219 confirmed positive COVID-19 and 1345 positive pneumonia cases taken from the open-source database consisting of patients suffering from the COVID-19 disease. Since a database consists of multiple types of diseases, multiclass classification for diagnosis of COVID-19 is used. The InceptionV3 model provides the highest classification accuracy (99.35% and 98.29%) for two binary classifications (normal vs. COVID-19 and COVID- 19 vs. Pneumonia) compare to VGG16 model’s accuracy (97.71% and 96.27%). Whereas, VGG16 provides highest accuracy (98.84%)for multiclass-classification(normal vs COVID- 19 vs pneumonia) as compared to VGG16 model’s accuracy(96.35%).

Author(s):  
P. Srinivasa Rao ◽  
Pradeep Bheemavarapu ◽  
P. S. Latha Kalyampudi ◽  
T. V. Madhusudhana Rao

Background: Coronavirus (COVID-19) is a group of infectious diseases caused by related viruses called coronaviruses. In humans, the seriousness of infection caused by a coronavirus in the respiratory tract can vary from mild to lethal. A serious illness can be developed in old people and those with underlying medical problems like diabetes, cardiovascular disease, cancer, and chronic respiratory disease. For the diagnosis of the coronavirus disease, due to the growing number of cases, a limited number of test kits for COVID-19 are available in the hospitals. Hence, it is important to implement an automated system as an immediate alternative diagnostic option to pause the spread of COVID-19 in the population. Objective: This paper proposes a deep learning model for classification of coronavirus infected patient detection using chest X-ray radiographs. Methods: A fully connected convolutional neural network model is developed to classify healthy and diseased X-ray radiographs. The proposed neural network model consists of seven convolutional layers with rectified linear unit, softmax (last layer) activation functions and max pooling layers which were trained using the publicly available COVID-19 dataset. Results and Conclusion: For validation of the proposed model, the publicly available chest X-ray radiograph dataset consisting COVID-19 and normal patient’s images were used. Considering the performance of the results that are evaluated based on various evaluation metrics such as precision, recall, MSE, RMSE & accuracy, it is seen that the accuracy of the proposed CNN model is 98.07%.


2021 ◽  
Vol 2071 (1) ◽  
pp. 012001
Author(s):  
J Ureta ◽  
A Shrestha

Abstract Tuberculosis(TB) is one of the top 10 causes of death worldwide, and drug-resistant TB is a major public health concern especially in resource-constrained countries. In such countries, molecular diagnosis of drug-resistant TB remains a challenge; and imaging tools such as X-rays, which are cheaply and widely available, can be a valuable supplemental resource for early detection and screening. This study uses a specialized convolutional neural network to perform binary classification of chest X-ray images to classify drug-resistant and drug-sensitive TB. The models were trained and validated using the TBPortals dataset which contains 2,973 labeled X-ray images from TB patients. The classifiers were able to identify the presence or absence of drug-resistant Tuberculosis with an AUROC between 0.66–0.67, which is an improvement over previous attempts using deep learning networks.


2021 ◽  
Vol 11 (21) ◽  
pp. 10301
Author(s):  
Muhammad Shoaib Farooq ◽  
Attique Ur Rehman ◽  
Muhammad Idrees ◽  
Muhammad Ahsan Raza ◽  
Jehad Ali ◽  
...  

COVID-19 has been difficult to diagnose and treat at an early stage all over the world. The numbers of patients showing symptoms for COVID-19 have caused medical facilities at hospitals to become unavailable or overcrowded, which is a major challenge. Studies have recently allowed us to determine that COVID-19 can be diagnosed with the aid of chest X-ray images. To combat the COVID-19 outbreak, developing a deep learning (DL) based model for automated COVID-19 diagnosis on chest X-ray is beneficial. In this research, we have proposed a customized convolutional neural network (CNN) model to detect COVID-19 from chest X-ray images. The model is based on nine layers which uses a binary classification method to differentiate between COVID-19 and normal chest X-rays. It provides COVID-19 detection early so the patients can be admitted in a timely fashion. The proposed model was trained and tested on two publicly available datasets. Cross-dataset studies are used to assess the robustness in a real-world context. Six hundred X-ray images were used for training and two hundred X-rays were used for validation of the model. The X-ray images of the dataset were preprocessed to improve the results and visualized for better analysis. The developed algorithm reached 98% precision, recall and f1-score. The cross-dataset studies also demonstrate the resilience of deep learning algorithms in a real-world context with 98.5 percent accuracy. Furthermore, a comparison table was created which shows that our proposed model outperforms other relative models in terms of accuracy. The quick and high-performance of our proposed DL-based customized model identifies COVID-19 patients quickly, which is helpful in controlling the COVID-19 outbreak.


Author(s):  
Mohammad Khalid Pandit ◽  
Shoaib Amin Banday

Purpose Novel coronavirus is fast spreading pathogen worldwide and is threatening billions of lives. SARS n-CoV2 is known to affect the lungs of the COVID-19 positive patients. Chest x-rays are the most widely used imaging technique for clinical diagnosis due to fast imaging time and low cost. The purpose of this study is to use deep learning technique for automatic detection of COVID-19 using chest x-rays. Design/methodology/approach The authors used a data set containing confirmed COVID-19 positive, common bacterial pneumonia and healthy cases (no infection). A collection of 1,428 x-ray images is used in this study. The authors used a pre-trained VGG-16 model for the classification task. Transfer learning with fine-tuning was used in this study to effectively train the network on a relatively small chest x-ray data set. Initial experiments show that the model achieves promising results and can be greatly used to expedite COVID-19 detection. Findings The authors achieved an accuracy of 96% and 92.5% in two and three output class cases, respectively. Based on these findings, the medical community can access using x-ray images as possible diagnostic tool for faster COVID-19 detection to complement the already testing and diagnosis methods. Originality/value The proposed method can be used as initial screening which can help health-care professionals to better treat the COVID patients by timely detecting and screening the presence of disease.


Author(s):  
Dilbag Singh ◽  
Vijay Kumar ◽  
Vaishali Yadav ◽  
Manjit Kaur

There are limited coronavirus disease 2019 (COVID-19) testing kits, therefore, development of other diagnosis approaches is desirable. The doctors generally utilize chest X-rays and Computed Tomography (CT) scans to diagnose pneumonia, lung inflammation, abscesses, and/or enlarged lymph nodes. Since COVID-19 attacks the epithelial cells that line our respiratory tract, therefore, X-ray images are utilized in this paper, to classify the patients with infected (COVID-19 [Formula: see text]ve) and uninfected (COVID-19 [Formula: see text]ve) lungs. Almost all hospitals have X-ray imaging machines, therefore, the chest X-ray images can be used to test for COVID-19 without utilizing any kind of dedicated test kits. However, the chest X-ray-based COVID-19 classification requires a radiology expert and significant time, which is precious when COVID-19 infection is increasing at a rapid rate. Therefore, the development of an automated analysis approach is desirable to save the medical professionals’ valuable time. In this paper, a deep convolutional neural network (CNN) approach is designed and implemented. Besides, the hyper-parameters of CNN are tuned using Multi-objective Adaptive Differential Evolution (MADE). Extensive experiments are performed by considering the benchmark COVID-19 dataset. Comparative analysis reveals that the proposed technique outperforms the competitive machine learning models in terms of various performance metrics.


Author(s):  
V. N. Manjunath Aradhya ◽  
Mufti Mahmud ◽  
D. S. Guru ◽  
Basant Agarwal ◽  
M. Shamim Kaiser

AbstractCoronavirus disease (COVID-19) has infected over more than 28.3 million people around the globe and killed 913K people worldwide as on 11 September 2020. With this pandemic, to combat the spreading of COVID-19, effective testing methodologies and immediate medical treatments are much required. Chest X-rays are the widely available modalities for immediate diagnosis of COVID-19. Hence, automation of detection of COVID-19 from chest X-ray images using machine learning approaches is of greater demand. A model for detecting COVID-19 from chest X-ray images is proposed in this paper. A novel concept of cluster-based one-shot learning is introduced in this work. The introduced concept has an advantage of learning from a few samples against learning from many samples in case of deep leaning architectures. The proposed model is a multi-class classification model as it classifies images of four classes, viz., pneumonia bacterial, pneumonia virus, normal, and COVID-19. The proposed model is based on ensemble of Generalized Regression Neural Network (GRNN) and Probabilistic Neural Network (PNN) classifiers at decision level. The effectiveness of the proposed model has been demonstrated through extensive experimentation on a publicly available dataset consisting of 306 images. The proposed cluster-based one-shot learning has been found to be more effective on GRNN and PNN ensembled model to distinguish COVID-19 images from that of the other three classes. It has also been experimentally observed that the model has a superior performance over contemporary deep learning architectures. The concept of one-shot cluster-based learning is being first of its kind in literature, expected to open up several new dimensions in the field of machine learning which require further researching for various applications.


2020 ◽  
Author(s):  
Juliana C. Gomes ◽  
Valter A. de F. Barbosa ◽  
Maira A. Santana ◽  
Jonathan Bandeira ◽  
Mêuser Jorge Silva Valença ◽  
...  

AbstractIn late 2019, the SARS-Cov-2 spread worldwide. The virus has high rates of proliferation and causes severe respiratory symptoms, such as pneumonia. There is still no specific treatment and diagnosis for the disease. The standard diagnostic method for pneumonia is chest X-ray image. There are many advantages to using Covid-19 diagnostic X-rays: low cost, fast and widely available. We propose an intelligent system to support diagnosis by X-ray images. We tested Haralick and Zernike moments for feature extraction. Experiments with classic classifiers were done. Support vector machines stood out, reaching an average accuracy of 89.78%, average recall and sensitivity of 0.8979, and average precision and specificity of 0.8985 and 0.9963 respectively. The system is able to differentiate Covid-19 from viral and bacterial pneumonia, with low computational cost.


2021 ◽  
Vol 8 (1) ◽  
pp. 9
Author(s):  
Buyut Khoirul Umri ◽  
Ema Utami ◽  
Mei P Kurniawan

Covid-19 menyerang sel-sel epitel yang melapisi saluran pernapasan sehingga dalam kasus ini dapat memanfaatkan gambar x-ray dada untuk menganalisis kesehatan paru-paru pada pasien. Menggunakan x-ray dalam bidang medis merupakan metode yang lebih cepat, lebih mudah dan tidak berbahaya yang dapat dimanfaatkan pada banyak hal. Salah satu metode yang paling sering digunakan dalam klasifikasi gambar adalah convolutional neural networks (CNN). CNN merupahan jenis neural network yang sering digunakan dalam data gambar dan sering digunakan dalam mendeteksi dan mengenali object pada sebuah gambar. Model arsitektur pada metode CNN juga dapat dikembangkan dengan transfer learning yang merupakan proses menggunakan kembali model pre-trained yang dilatih pada dataset besar, biasanya pada tugas klasifikasi gambar berskala besar. Tinjauan literature review ini digunakan untuk menganalisis penggunaan transfer learning pada CNN sebagai metode yang dapat digunakan untuk mendeteksi covid-19 pada gambar x-ray dada. Hasil sistematis review menunjukkan bahwa algoritma CNN dapat digunakan dengan akruasi yang baik dalam mendeteksi covid-19 pada gambar x-ray dada dan dengan pengembangan model transfer learning mampu mendapatkan performa yang maksimal dengan dataset yang besar maupun kecil.Kata Kunci—CNN, transfer learning, deteksi, covid-19Covid-19 attacks the epithelial cells lining the respiratory tract so that in this case it can utilize chest x-ray images to analyze the health of the lungs in patients. Using x-rays in the medical field is a faster, easier and harmless method that can be utilized in many ways. One of the most frequently used methods in image classification is convolutional neural networks (CNN). CNN is a type of neural network that is often used in image data and is often used in detecting and recognizing objects in an image. The architectural model in the CNN method can also be developed with transfer learning which is the process of reusing pre-trained models that are trained on large datasets, usually on the task of classifying large-scale images. This literature review review is used to analyze the use of transfer learning on CNN as a method that can be used to detect covid-19 on chest x-ray images. The systematic review results show that the CNN algorithm can be used with good accuracy in detecting covid-19 on chest x-ray images and by developing transfer learning models able to get maximum performance with large and small datasets.Keywords—CNN, transfer learning, detection, covid-19


2021 ◽  
Vol 11 (1) ◽  
pp. 22-30
Author(s):  
Arun Prasad Mohan

There are more than one million cases of lung cancer per year in India alone. Early detection is vital in increasing the survival rate and decreasing treatment costs. This research is aimed at building a deep convolutional neural network which uses chest x-rays to identify lung mass, and then make a comparative study by tuning the hyperparameters. NIH Chest X-Ray Dataset containing more than 112,000 images were used for training and testing. The data was analysed and then fed to the neural network. Accuracy of over 96% was obtained in all the trials. A comparative study by varying the number of inputs and varying the number of hidden layers was carried out. The accuracies obtained were compared and was found that the accuracy increased with the increase in the number of hidden layers. A complete product was then ideated which when implemented would be a vital diagnostic tool and can be used in the remote locations of a country having just x-ray facilities and no other advanced medical equipment like CT.


2020 ◽  
Vol 10 (9) ◽  
pp. 3233 ◽  
Author(s):  
Tawsifur Rahman ◽  
Muhammad E. H. Chowdhury ◽  
Amith Khandakar ◽  
Khandaker R. Islam ◽  
Khandaker F. Islam ◽  
...  

Pneumonia is a life-threatening disease, which occurs in the lungs caused by either bacterial or viral infection. It can be life-endangering if not acted upon at the right time and thus the early diagnosis of pneumonia is vital. The paper aims to automatically detect bacterial and viral pneumonia using digital x-ray images. It provides a detailed report on advances in accurate detection of pneumonia and then presents the methodology adopted by the authors. Four different pre-trained deep Convolutional Neural Network (CNN): AlexNet, ResNet18, DenseNet201, and SqueezeNet were used for transfer learning. A total of 5247 chest X-ray images consisting of bacterial, viral, and normal chest x-rays images were preprocessed and trained for the transfer learning-based classification task. In this study, the authors have reported three schemes of classifications: normal vs. pneumonia, bacterial vs. viral pneumonia, and normal, bacterial, and viral pneumonia. The classification accuracy of normal and pneumonia images, bacterial and viral pneumonia images, and normal, bacterial, and viral pneumonia were 98%, 95%, and 93.3%, respectively. This is the highest accuracy, in any scheme, of the accuracies reported in the literature. Therefore, the proposed study can be useful in more quickly diagnosing pneumonia by the radiologist and can help in the fast airport screening of pneumonia patients.


Sign in / Sign up

Export Citation Format

Share Document