scholarly journals CbPLDγ gene from Chorispora bungeana: Gene cloning, characterization, expression, and expression analysis in drought

2020 ◽  
Author(s):  
Ning Yang ◽  
Bo Liu ◽  
Pengjun Yang ◽  
Hui Li ◽  
Yaping Zhou

Abstract Background: Chorispora bungeana (C. bungeana) is a typical subnival alpine species, which shows high tolerance to multiple abiotic stresses. Phospholipase D (PLD) is a crucial enzyme participated in membrane phospholipid catabolism. In this study, to explore the function of CbPLDγ in drought stress, we cloned and characterized a CbPLDγ gene, which is a part of CbPLD gene family and from C. bungeana.Methods: Use the gateway method for vector construction, using DNAstar software, PCR machine, centrifuge, pipette, electrophoresis, gel imaging system, spectrophotometer, confocal microscope, etc. Spss, Orgin software for statistical analysis.Results: The CbPLDγ gene encodes 859 amino acids containing "FIYIENQYF" domain and two HKD domains. Bioinformatics analyses showed that the CbPLDγ is highly homologous with PLDs from other plant species. Real-time quantitative PCR (qRT-PCR) and Beta-glucuronidase (GUS) assay showed that CbPLDγ was accumulated dominantly in roots and stems. Compered with the control, the expression pattern of the CbPLDγ mRNA is in response to low temperature, salt, mannitol, and exogenous ABA have up-regulated. Subcellular localisation analysis showed that the CbPLDγ was localized in the cell membrane. Compared with wild-type Arabidopsis thaliana, CbPLDγ gene overexpression plants showed higher activities of antioxidant enzymes, and lower levels of malonidiadehyde content and electrolyte leakage under drought stress.Conclusions: In this study, novel PLDγ gene was amplification from C. bungeana and was called CbPLDγ. These confirmed that CbPLDγ involved in the response to drought stress, and has the potential to improve the drought tolerance of plants. This is the first report about cloning and characterizing the gene of CbPLDγ from C. bungeana. It laid a foundation for further research and improvement of the PLD gene family of C. bungeana.

2021 ◽  
Author(s):  
nikang ◽  
bang

Abstract Phospholipase D (PLD) is a crucial enzyme participated in membrane phospholipid catabolism. In this study, to explore the function of CbPLDγ in drought stress, a CbPLDγ gene, which is a part of CbPLD gene family and from Chorispora bungeana (C. bungeana) was cloned and encoded a protein of 859 amino acids with a calculated molecular weight of 96.3 kDa and with a PI(Isoionic Point) of 7.88. Real-time quantitative PCR (RT-qPCR) and Beta-glucuronidase (GUS) assay showed that CbPLDγ was accumulated dominantly in roots and hypocotyls. Compared with the control, CbPLDγ was positively responsed to the low temperature, salt, mannitol, and exogenous ABA. Subcellular localization analysis showed that the CbPLDγ was localized in the cell membrane. CbPLDγ-overexpression Arabidopsis under drought stress showed higher relative expression of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD), as well as highe content of proline, soluble proteion and soluble sugar. However, H2O2, malonaldehyde (MDA) content and electrolyte leakage (EL) were lower than wild-type Arabidopsis. These indicated that CbPLDγ was involved in the drought tolerance, and overexpression of CbPLDγ enhanced the drought tolerance in Arabidopsis. This is the first report about cloning and characterizing the gene of CbPLDγ from C. bungeana. It laid a foundation for further research and improvement of the PLD gene family of C. bungeana.


2020 ◽  
Author(s):  
Reuben Tayengwa ◽  
Pushpa Sharma-Koirala ◽  
Courtney F. Pierce ◽  
Breanna E Werner ◽  
Michael M Neff

Abstract Background The 29-member Arabidopsis AHL gene family is classified into three main classes based on nucleotide and protein sequence evolutionary differences. These differences include the presence or absence of introns, type and/or number of conserved AT-hook and PPC domains. AHL gene family members are divided into two phylogenetic clades, Clade-A and Clade-B. A majority of the 29 members remain functionally uncharacterized. Furthermore, the biological significance of the DNA and peptide sequence diversity, observed in the conserved motifs and domains found in the different AHL types, is a subject area that remains largely unexplored. Results Transgenic plants overexpressing AtAHL20 flowered later than the wild type. Transcript accumulation analyses showed that 35S:AtAHL20 plants contained reduced FT, TSF, AGL8 and SPL3 mRNA levels. Similarly, overexpression of AtAHL20’s orthologue in Camelina sativa, Arabidopsis’ closely related Brassicaceae family member species, conferred a late-flowering phenotype via suppression of CsFT expression. In addition, 35S:AtAHL20 seedlings exhibited suppressed hypocotyl length and enhanced water stress tolerance. However, overexpression of an aberrant AtAHL20 gene harboring a missense mutation in the AT-hook domain’s highly conserved R-G-R core motif abolished the late-flowering phenotype. Data from targeted yeast-two-hybrid assays showed that AtAHL20 interacted with itself and several other Clade-A Type-I AHLs which have been previously implicated in flowering-time regulation: AtAHL22, AtAHL27 and AtAHL29. Conclusion We showed via gain-function analysis that AtAHL20 is a negative regulator of FT expression, as well as other downstream flowering time regulating genes. A similar outcome in Camelina sativa transgenic plants overexpressing CsAHL20 suggest that this is a conserved function. Additionally, overexpression of AtAHL20 resulted in shorter hypocotyls and enhanced drought stress tolerance compared to wild-type plants. Our results demonstrate that AtAHL20 is a negative regulator of transition to flowering and hypocotyl elongation, but a positive regulator of drought stress tolerance.


2020 ◽  
Vol 10 (4) ◽  
pp. 677-696
Author(s):  
Zhi-Gang Dong ◽  
Hui Liu ◽  
Xiao-Long Wang ◽  
Jun Tang ◽  
Kai-Kai Zhu ◽  
...  

BACKGROUND: Grapevine was one of the most important perennial fruit crops worldwide. Acyl-CoA-binding proteins (ACBPs) in eudicots and monocots show conservation in an acyl-CoA-binding domain (ACB domain) which binds acyl-CoA esters. OBJECTIVE: The information and data provided in the present study contributes to understand the evolutionary processes and potential functions of this gene family in grapevine growth and development, and responses to abiotic stress. METHODS: Using the complete grapevine genome sequences, we investigated the number grapevine ACBP genes, the exon-intron structure, phylogenetic relationships and synteny with the Arabidopsis ACBP gene family. Furthermore, the expression profiles of VvACBP genes based on public microarray data in different tissues, and the expression patterns responding to different exogenous hormones as well as abiotic and biotic stresses were presented. The qRT-PCR was used to verify the microarray data under drought stress treatments. Finally, the leaf relative water content (RWC), leaf chlorophyll content, and enzymatic activities were measured to further examine the tolerance to drought stress in grapevine. RESULTS: The six grapevine ACBPs were identified. Their distribution into various groups differed from Arabidopsis and rice. Synteny analysis demonstrated that several VvACBP genes were found in corresponding syntenic blocks of Arabidopsis, suggesting that these genes arose before the divergence of the respective lineages. Sequence alignment and structural annotation provided an overview of variations that might contribute to functional divergence from Arabidopsis ACBPs. Expressional analyses suggested that both conserved and variant biological functions exist in ACBPs across different species. The expression pattern of these genes were similar in the microarray and qRT-PCR analyses. Gene structure organization and expression characteristics of VvACBPs resembled those of their Arabidopsis orthologous, although species-specific differences also exist. Differential regulation of genes suggested functional diversification among isoforms. The biochemical and physiological data showed the tolerance to drought stress of grapevine. CONCLUSIONS: These findings provided insight into evolution of ACBP gene family in plants and a solid foundation for a deeper understanding of the complex molecular responses of grapevine to stress.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jiao Li ◽  
Yaran Zhao ◽  
Chenliang Chang ◽  
Xin Liu ◽  
Jing Jiang

Cation gradients in plant cellular compartments are maintained by the synergistic actions of various ion exchangers, pumps, and channels. Cation/Ca2+ exchanger (CCX) is one of the clades of the Ca2+/cation antiporter super family. Here, five SlCCX genes were identified in tomato. Sequence analysis indicated that SlCCXs have the conserved motifs as the CCX domain. Analysis of the expression level of each member of tomato CCX gene family under cation (Mg2+, Mn2+, Na+, and Ca2+) treatment was determined by qRT-PCR. Tomato CCX demonstrated different degrees of responding to cation treatment. Changes in SlCCX1-LIKE expression was induced by Mg2+ and Mn2+ treatment. Analysis of the expression of SlCCX genes in different tissues demonstrated that constitutive high expression of a few genes, including SlCCX1-LIKE and SlCCX5, indicated their role in tomato organ growth and development. Overexpression of SlCCX1-LIKE dramatically induced leaf senescence. Transcriptome analysis showed that genes related to ROS and several IAA signaling pathways were significantly downregulated, whereas ETH and ABA signaling pathway-related genes were upregulated in overexpression of SlCCX1-LIKE (OE-SlCCX1-LIKE) plants, compared with the wild type (WT). Moreover, overexpression of SlCCX1-LIKE plants accumulated more ROS content but less Mg2+ content. Collectively, the findings of this study provide insights into the base mechanism through which CCXs regulate leaf senescence in tomato.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11938
Author(s):  
Shilin Sun ◽  
Bo Wang ◽  
Qi Jiang ◽  
Zhuoran Li ◽  
Site Jia ◽  
...  

Background DNA binding with one finger (Dof) proteins are plant-specific transcription factors playing vital roles in developmental processes and stress responses in plants. Nevertheless, the characterizations, expression patterns, and functions of the Dof family under drought stress (a key determinant of plant physiology and metabolic homeostasis) in woody plants remain unclear. Methods The birch (Betula platyphylla var. mandshuric) genome and plant TFDB database were used to identify Dof gene family members in birch plants. ClustalW2 of BioEdit v7.2.1, MEGA v7.0, ExPASy ProtParam tool, Subloc, TMHMM v2.0, GSDS v2.0, MEME, TBtools, KaKs Calculator v2.0, and PlantCARE were respectively used to align the BpDof sequences, build a phylogenetic tree, identify the physicochemical properties, analyze the chromosomal distribution and synteny, and identify the cis-elements in the promoter regions of the 26 BpDof genes. Additionally, the birch seedlings were exposed to PEG6000-simulated drought stress, and the expression patterns of the BpDof genes in different tissues were analyzed by qRT-PCR. The histochemical staining and the evaluation of physiological indexes were performed to assess the plant tolerance to drought with transient overexpression of BpDof4, BpDof11, and BpDof17 genes. SPSS software and ANOVA were used to conduct all statistical analyses and determine statistically significant differences between results. Results A total of 26 BpDof genes were identified in birch via whole-genome analysis. The conserved Dof domain with a C(x)2C(x)21C(x)2C zinc finger motif was present in all BpDof proteins. These birch BpDofs were classified into four groups (A to D) according to the phylogenetic analysis of Arabidopsis thaliana Dof genes. BpDof proteins within the same group mostly possessed similar motifs, as detected by conserved motif analysis. The exon–intron analysis revealed that the structures of BpDof genes differed, indicating probable gene gain and lose during the BpDof evolution. The chromosomal distribution and synteny analysis showed that the 26 BpDofs were unevenly distributed on 14 chromosomes, and seven duplication events among six chromosomes were found. Cis-acting elements were abundant in the promoter regions of the 26 BpDof genes. qRT-PCR revealed that the expression of the 26 BpDof genes was differentially regulated by drought stress among roots, stems, and leaves. Most BpDof genes responded to drought stress, and BpDof4, BpDof11, and BpDof17­ were significantly up-regulated. Therefore, plants overexpressing these three genes were generated to investigate drought stress tolerance. The BpDof4-, BpDof11-, and BpDof17­-overexpressing plants showed promoted reactive oxygen species (ROS) scavenging capabilities and less severe cell damage, suggesting that they conferred enhanced drought tolerance in birch. This study provided an in-depth insight into the structure, evolution, expression, and function of the Dof gene family in plants.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9936
Author(s):  
Jingjing Wang ◽  
Zhaohai Du ◽  
Xuehan Huo ◽  
Juan Zhou ◽  
Yu Chen ◽  
...  

Background The circadian clock not only participates in regulating various stages of plant growth, development and metabolism, but confers plant environmental adaptability to stress such as drought. Pseudo-Response Regulators (PRRs) are important component of the central oscillator (the core of circadian clock) and play a significant role in plant photoperiod pathway. However, no systematical study about this gene family has been performed in cotton. Methods PRR genes were identified in diploid and tetraploid cotton using bioinformatics methods to investigate their homology, duplication and evolution relationship. Differential gene expression, KEGG enrichment analysis and qRT-PCR were conducted to analyze PRR gene expression patterns under diurnal changes and their response to drought stress. Results A total of 44 PRR family members were identified in four Gossypium species, with 16 in G. hirsutum, 10 in G. raimondii, and nine in G. barbadense as well as in G. arboreum. Phylogenetic analysis indicated that PRR proteins were divided into five subfamilies and whole genome duplication or segmental duplication contributed to the expansion of Gossypium PRR gene family. Gene structure analysis revealed that members in the same clade are similar, and multiple cis-elements related to light and drought stress response were enriched in the promoters of GhPRR genes. qRT-PCR results showed that GhPRR genes transcripts presented four expression peaks (6 h, 9 h, 12 h, 15 h) during 24 h and form obvious rhythmic expression trend. Transcriptome data with PEG treatment, along with qRT-PCR verification suggested that members of clade III (GhPRR5a, b, d) and clade V (GhPRR3a and GhPRR3c) may be involved in drought response. This study provides an insight into understanding the function of PRR genes in circadian rhythm and in response to drought stress in cotton.


Author(s):  
Ai-Hua Wang ◽  
Lan Yang ◽  
Xin-Zhuan Yao ◽  
Xiao-Peng Wen

AbstractPhosphoethanolamine N-methyltransferase (PEAMTase) catalyzes the methylation of phosphoethanolamine to produce phosphocholine and plays an important role in the abiotic stress response. Although the PEAMT genes has been isolated from many species other than pitaya, its role in the drought stress response has not yet been fully elucidated. In the present study, we isolated a 1485 bp cDNA fragment of HpPEAMT from pitaya (Hylocereus polyrhizus). Phylogenetic analysis showed that, during its evolution, HpPEAMT has shown a high degree of amino acid sequence similarity with the orthologous genes in Chenopodiaceae species. To further investigate the function of HpPEAMT, we generated transgenic tobacco plants overexpressing HpPEAMT, and the transgenic plants accumulated significantly more glycine betaine (GB) than did the wild type (WT). Drought tolerance trials indicated that, compared with those of the wild-type (WT) plants, the roots of the transgenic plants showed higher drought tolerance ability and exhibited improved drought tolerance. Further analysis revealed that overexpression of HpPEAM in Nicotiana tabacum resulted in upregulation of transcript levels of GB biosynthesis-related genes (NiBADH, NiCMO and NiSDC) in the leaves. Furthermore, compared with the wild-type plants, the transgenic tobacco plants displayed a significantly lower malondialdehyde (MDA) accumulation and higher activities of the superoxide dismutase (SOD) and peroxidase (POD) antioxidant enzymes under drought stress. Taken together, our results suggested that HpPEAMT enhanced the drought tolerance of transgenic tobacco.


2021 ◽  
Vol 22 (10) ◽  
pp. 5064
Author(s):  
Qinghua Chen ◽  
Linghui Guo ◽  
Yanwen Yuan ◽  
Shuangling Hu ◽  
Fei Guo ◽  
...  

Histone methylation plays an important regulatory role in the drought response of many plants, but its regulatory mechanism in the drought response of the tea plant remains poorly understood. Here, drought stress was shown to induce lower relative water content and significantly downregulate the methylations of histone H3K4 in the tea plant. Based on our previous analysis of the SET Domain Group (SDG) gene family, the full-length coding sequence (CDS) of CsSDG36 was cloned from the tea cultivar ‘Fuding Dabaicha’. Bioinformatics analysis showed that the open reading frame (ORF) of the CsSDG36 gene was 3138 bp, encoding 1045 amino acids and containing the conserved structural domains of PWWP, PHD, SET and PostSET. The CsSDG36 protein showed a close relationship to AtATX4 of the TRX subfamily, with a molecular weight of 118,249.89 Da, and a theoretical isoelectric point of 8.87, belonging to a hydrophilic protein without a transmembrane domain, probably located on the nucleus. The expression of CsSDG36 was not detected in the wild type, while it was clearly detected in the over-expression lines of Arabidopsis. Compared with the wild type, the over-expression lines exhibited lower hyperosmotic resistance by accelerating plant water loss, increasing reactive oxygen species (ROS) pressure, and increasing leaf stomatal density. RNA-seq analysis suggested that the CsSDG36 overexpression caused the differential expression of genes related to chromatin assembly, microtubule assembly, and leaf stomatal development pathways. qRT-PCR analysis revealed the significant down-regulation of stomatal development-related genes (BASL, SBT1.2(SDD1), EPF2, TCX3, CHAL, TMM, SPCH, ERL1, and EPFL9) in the overexpression lines. This study provides a novel sight on the function of histone methyltransferase CsSDG36 under drought stress.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Dongyun Lei ◽  
Lechun Lv ◽  
Li Yang ◽  
Wenjuan Wu ◽  
Yong Liu ◽  
...  

Chronic actinic dermatitis (CAD), a photosensitive dermatosis, is characterized by inflammatory lesions, especially on sun-exposed skin. However, its pathogenesis remains unclear. In this study, second-generation RNA sequencing and comprehensive bioinformatics analyses of mRNAs and long noncoding RNAs (lncRNAs) were performed to determine the transcriptome profiles of patients with CAD. A total 6889 annotated lncRNAs, 341 novel lncRNAs, and 65091 mRNAs were identified. Interestingly, patients with CAD and healthy controls showed distinct transcriptome profiles. Indeed, 198 annotated (81.48%) and 45 novel (18.52%) lncRNAs were differentially expressed between the two groups. GO, KEGG, and RGSEA analyses of lncRNAs showed that inflammatory and immune response related pathways played crucial roles in the pathogenetic mechanism of CAD. In addition, we unveiled key differentially expressed lncRNAs, including lncRNA RP11-356I2.4 which plays a role probably by regulating TNFAIP3 and inflammation. qRT-PCR data validated the differentially expressed genes. The newly identified lncRNAs may have potential roles in the development of CAD; these findings lay a solid foundation for subsequent functional exploration of lncRNAs and mRNAs as therapeutic targets for CAD.


2017 ◽  
Vol 44 (12) ◽  
pp. 1219
Author(s):  
Zhibin Wen ◽  
Mingli Zhang

The co-ordination between the primary carboxylating enzyme phosphoenolpyruvate carboxylase (PEPC) and the further decarboxylating enzymes is crucial to the efficiency of the CO2-concentrating mechanism in C4 plants, and investigations on more types of C4 plants are needed to fully understand their adaptation mechanisms. In this study we investigated the effect of drought on carboxylating enzyme PEPC, and the further decarboxylating NAD-malic enzyme (NAD-ME) of Salsola lanata Pall. (Chenopodiaceae) – an annual succulent C4-NAD-ME subtype desert plant. We investigated enzyme activity at the transcriptional level with real-time quantitative PCR and at the translational level by immunochemical methods, and compared S. lanata with other forms of studied C4 plants under drought stress. Results showed that only severe stress limited PEPC enzyme activity (at pH 8.0) of S. lanata significantly. Considering that PEPC enzyme activity (at pH 8.0) was not significantly affected by phosphorylation, the decrease of PEPC enzyme activity (at pH 8.0) of S. lanata under severe stress may be related with decreased PEPC mRNA. The suggestion of increased phosphorylation of the PEPC enzyme in plants under moderate stress was supported by the ratio of PEPC enzyme activity at pH 7.3/8.0, as PEPC enzyme is inhibited by L-malate and the evidence of the 50% inhibiting concentration of L-malate. NAD-ME activity decreased significantly under moderate and severe stress, and coincided with a change of leaf water content rather than the amount of α-NAD-ME mRNA and protein. Leaf dehydration may cause the decrease of NAD-ME activity under water stress. Compared with other C4 plants, the activities of PEPC and NAD-ME of S. lanata under drought stress showed distinct features.


Sign in / Sign up

Export Citation Format

Share Document