scholarly journals CircRNA hsa_circ_0110102 Function as Anti-Oncogenic Gene in Hepatocellular Carcinoma Through Modulating miR-580-5p/CCL2 Pathway

2020 ◽  
Author(s):  
Xinxing Wang ◽  
Wei Sheng ◽  
Tao Xu ◽  
Jiawen Xu ◽  
Zhenhai Zhang

Abstract Background: Circular RNAs (circRNAs) have been shown to have critical regulatory roles in tumor biology, whereas their contributions in hepatocellular carcinoma (HCC) still remains enigmatic. The purpose of this study was to investigate the molecular mechanisms involved in hsa_circ_0110102 in the occurrence and development of HCC. Methods: The expression levels of hsa_circ_0110102 in HCC cell lines and tissues were estimated by RT-qPCR assay. The proliferation, migration, and invasion of HCC cells were determined by CCK-8 and transwell assay. The western blot and ELISA were employed to examine the related-protein and cytokine expression. The association between miR-580-5p and hsa_circ_0110102 or CCL2 was predicted and affirmed by dual-luciferase reporter assay and RNA pull-down.Results: hsa_circ_0110102 was significantly down-regulated in HCC cell lines and tissues, low hsa_circ_0110102 expression levels were associated with poor prognosis. Knockdown hsa_circ_0110102 significantly inhibited cell proliferation, migration and invasion. In addition, luciferase assay and RNA pull-down assay indicating that hsa_circ_0110102 function as sponge for miR-580-5p. Moreover, miR-580-5p which could directly bind to the 3’-UTR of CCL2 and induce its expression, then active the COX-2/PGE2 pathway in macrophage via FoxO1 in p38 MAPK dependent manner. Furthermore, the Δ256 mutant of FoxO1 showed no activation effect. Conclusion: hsa_circ_0110102 act as a sponge for miR-580-5p and decreased CCL2 secretion in HCC cells, then inhibits pro-inflammatory cytokine release from activated macrophage by regulating the COX-2/PGE2 pathway. These results indicating that hsa_circ_0110102 serves as a potential prognostic predictor or therapeutic target for HCC.

2020 ◽  
Author(s):  
Xinxing Wang ◽  
Wei Sheng ◽  
Tao Xu ◽  
Jiawen Xu ◽  
Juntao Chen ◽  
...  

Abstract Background Circular RNAs (circRNAs) have been shown to have critical regulatory roles in tumor biology, whereas their contributions in hepatocellular carcinoma (HCC) still remains enigmatic. The purpose of this study was to investigate the molecular mechanisms involved in hsa_circ_0110102 in the occurrence and development of HCC. Results hsa_circ_0110102 was significantly down-regulated in HCC cell lines and tissues, low hsa_circ_0110102 expression levels were associated with poor prognosis. Knockdown hsa_circ_0110102 significantly inhibited cell proliferation, migration and invasion. In addition, the interaction between hsa_circ_0110102 and miR-580-5p was predicted and verified by luciferase assay and RNA pull-down, indicating that hsa_circ_0110102 function as sponge of miR-580-5p. Moreover, miR-580-5p which could directly bind to the 3’-UTR of CCL2 and induce its expression, then active the COX-2/PGE2 pathway in macrophage via FoxO1 in p38 MAPK dependent manner. Furthermore, the Δ256 mutant of FoxO1 showed no activation effect. These results concluded that hsa_circ_0110102 act as a sponge for miR-580-5p and decreased CCL2 secretion in HCC cells, then inhibits pro-inflammatory cytokine release from activated macrophage by regulating the COX-2/PGE2 pathway. Conclusions These results indicating that hsa_circ_0110102 serves as a potential prognostic predictor or therapeutic target for HCC.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Qingmin Chen ◽  
Ludong Tan ◽  
Zhe Jin ◽  
Yahui Liu ◽  
Ze Zhang

Cellular retinoic acid-binding protein 2 (CRABP2) binds retinoic acid (RA) in the cytoplasm and transports it into the nucleus, allowing for the regulation of specific downstream signal pathway. Abnormal expression of CRABP2 has been detected in the development of several tumors. However, the role of CRABP2 in hepatocellular carcinoma (HCC) has never been revealed. The current study aimed to investigate the role of CRABP2 in HCC and illuminate the potential molecular mechanisms. The expression of CRABP2 in HCC tissues and cell lines was detected by western blotting and immunohistochemistry assays. Our results demonstrated that the expression levels of CRABP2 in HCC tissues were elevated with the tumor stage development, and it was also elevated in HCC cell lines. To evaluate the function of CRABP2, shRNA-knockdown strategy was used in HCC cells. Cell proliferation, metastasis, and apoptosis were analyzed by CCK-8, EdU staining, transwell, and flow cytometry assays, respectively. Based on our results, knockdown of CRABP2 by shRNA resulted in the inhibition of tumor proliferation, migration, and invasion in vitro, followed by increased tumor apoptosis-related protein expression and decreased ERK/VEGF pathway-related proteins expression. CRABP2 silencing in HCC cells also resulted in the failure to develop tumors in vivo. These results provide important insights into the role of CRABP2 in the development and development of HCC. Based on our findings, CRABP2 may be used as a novel diagnostic biomarker, and regulation of CRABP2 in HCC may provide a potential molecular target for the therapy of HCC.


Author(s):  
Hu Chen ◽  
Lequn Bao ◽  
Jianhua Hu ◽  
Dongde Wu ◽  
Xianli Tong

BackgroundIn recent years, microRNA-1-3p (miR-1-3p) has been linked to the progression of multiple cancers, whereas little is known about its role in hepatocellular carcinoma (HCC). Herein, we investigated the function of miR-1-3p in HCC, and its regulatory function on origin recognition complex subunit 6 (ORC6).MethodsQuantitative real-time polymerase chain reaction (qRT-PCR) was performed for detecting the expression levels of miR-1-3p and ORC6 mRNA in HCC samples and cell lines. ORC6 expression at the protein level was quantified by Western blot. After gain-of-function and loss-of-function models were established, cell counting kit-8 (CCK-8) assays, Transwell assays, flow cytometry, and 5-Ethynyl-2′-deoxyuridine (EdU) assay were performed for examining cell proliferation, migration, invasion, cell cycle, and apoptosis. The targeting relationship between miR-1-3p and ORC6 was confirmed with bioinformatic analysis and dual-luciferase reporter assays.ResultsThe expression of miR-1-3p was reduced in HCC samples and cell lines. Overexpression of miR-1-3p suppressed the proliferation, migration, and invasion, and induced cell-cycle arrest and apoptosis of HCC cells, whereas the opposite effects were induced by miR-1-3p inhibition. ORC6 is identified as a novel target of miR-1-3p, the expression of which is negatively correlated with miR-1-3p expression in HCC tissues. ORC6 overexpression facilitated the proliferation, migration, invasion, and cell cycle progression, and reduced apoptosis of HCC cells, whereas the opposite effects were induced by ORC6 knockdown. What is more, ORC6 overexpression counteracted the biological functions of miR-1-3p in HCC cells.ConclusionMiR-1-3p targets ORC6 to suppress the proliferation, migration, invasion, and cell cycle progression, and promote apoptosis of HCC cells.


Author(s):  
Yuanjun Lu ◽  
Yau-Tuen Chan ◽  
Hor-Yue Tan ◽  
Cheng Zhang ◽  
Wei Guo ◽  
...  

Abstract Background Drug resistance to sorafenib greatly limited the benefits of treatment in patients with hepatocellular carcinoma (HCC). MicroRNAs (miRNAs) participate in the development of drug resistance. The key miRNA regulators related to the clinical outcome of sorafenib treatment and their molecular mechanisms remain to be identified. Methods The clinical significance of miRNA-related epigenetic changes in sorafenib-resistant HCC was evaluated by analyzing publicly available databases and in-house human HCC tissues. The biological functions of miR-23a-3p were investigated both in vitro and in vivo. Proteomics and bioinformatics analyses were conducted to identify the mechanisms that regulating miR-23a-3p. Luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay were used to validate the binding relationship of miR-23a-3p and its targets. Results We found that miR-23a-3p was the most prominent miRNA in HCC, which was overexpressed in sorafenib non-responders and indicated poor survival and HCC relapse. Sorafenib-resistant cells exhibited increased miR-23a-3p transcription in an ETS Proto-Oncogene 1 (ETS1)-dependent manner. CRISPR-Cas9 knockout of miR-23a-3p improved sorafenib response in HCC cells as well as orthotopic HCC tumours. Proteomics analysis suggested that sorafenib-induced ferroptosis was the key pathway suppressed by miR-23a-3p with reduced cellular iron accumulation and lipid peroxidation. MiR-23a-3p directly targeted the 3′-untranslated regions (UTR) of ACSL4, the key positive regulator of ferroptosis. The miR-23a-3p inhibitor rescued ACSL4 expression and induced ferrotoptic cell death in sorafenib-treated HCC cells. The co-delivery of ACSL4 siRNA and miR-23a-3p inhibitor abolished sorafenib response. Conclusion Our study demonstrates that ETS1/miR-23a-3p/ACSL4 axis contributes to sorafenib resistance in HCC through regulating ferroptosis. Our findings suggest that miR-23a-3p could be a potential target to improve sorafenib responsiveness in HCC patients.


Author(s):  
Hui Sun ◽  
Junwei Zhai ◽  
Li Zhang ◽  
Yingnan Chen

IntroductionEmerging evidence suggests that circular RNAs (circRNAs) play critical roles in tumorigenesis. However, the roles and molecular mechanisms of circRNA leucine-rich repeat immunoglobulin domain-containing protein 3 (circ_LRIG3) in hepatocellular carcinoma (HCC) has not been investigated.Material and methodsThe expression levels of circ_LRIG3, miR-223-3p, and mitogen-activated protein kinase kinase 6 (MAP2K6) were determined by qRT-PCR. Flow cytometry was applied to determine the cell cycle distribution and apoptosis. Cell proliferation, migration and invasion were assessed by MTT, colony formation, and transwell assays. Western blot assay was employed to measure the protein levels of the snail, E-cadherin, MAP2K6, mitogen-activated protein kinase (MAPK), phospho-MAPK (p-MAPK), extracellular signal-regulated kinases (ERKs), and phospho-ERKs (p- ERKs). The relationship between miR-223-3p and circ_LRIG3 or MAP2K6 was predicted by bioinformatics tools and verified by dual-luciferase reporter assay. A xenograft tumor model was established to confirm the functions of circ_LRIG3 in vivo.ResultsCirc_LRIG3 and MAP2K6 expression were enhanced while miR-223-3p abundance was reduced in HCC tissues and cells. Knockdown of circ_LRIG3 inhibited cell proliferation, metastasis, and increasing apoptosis. MiR-223-3p was a target of circ_LRIG3, and its downregulation reversed the inhibitory effect of circ_LRIG3 knockdown on the progression of HCC cells. Moreover, MAP2K6 could bind to miR-223-3p, and MAP2K6 upregulation also abolished the suppressive impact of circ_LRIG3 interference on progression of HCC cells. Additionally, the silence of circ_LRIG3 suppressed the activation of the MAPK/ERK pathway and tumor growth by upregulating miR-223-3p and downregulating MAP2K6.ConclusionsCirc_LRIG3 knockdown inhibited HCC progression through regulating miR-223-3p/MAP2K6 axis and inactivating MAPK/ERK pathway.


2021 ◽  
Author(s):  
Chun Duan ◽  
Bin Quan ◽  
Ni Wang ◽  
Jianghua Yang ◽  
Yan-Lin Yu

Abstract Background: Hepatocellular carcinoma (HCC) is a common malignancy with high morbidity. The current study aimed to explore the molecular mechannism of lncRNA SLC16A1-AS1 in the tumorigenesis of HCC.Material and Methods: The expression of SLC16A1-AS1 and miR-411 were examined in clinical HCC tissues. HCC cell lines Hep3B and Huh-7 were employed and transfected with si-SLC16A1-AS1. The correlation between SLC16A1-AS1 and miR-411 was verified by luciferase reporter assay. Cell viability was detected by CCK-8 assay. Cell migration and invasion capacity were examined by transwell assay. The protein level of MITD1 was analyzed by western blotting.Results: The expression of SLC16A1-AS1 markedly increased in HCC tissues and cell lines. Subsequent studies identified SLC16A1-AS1 as a downstream target of miR-411. In addition, SLC16A1-AS1 knockdown and miR-411 overexpression significantly stagnated progression of HCC cells. SLC16A1-AS1 knockdown also downregulated MITD1 levels. Conclusion: Our findings showed that SLC16A1-AS1 was overexpressed in HCC cells and tissues. SLC16A1-AS1 promoted the malignant characteristics of HCC cells and acted as an oncogene. Its regulatory effect may be associated with miR-411/MITD1 axis. Therefore, SLC16A1-AS1 has a potential be used as a biomarker or therapeutic target for the treatment of HCC.


2019 ◽  
Vol 9 (8) ◽  
pp. 1100-1107
Author(s):  
Qiuyuan Shi ◽  
Dandan Shen ◽  
Yuanjiang Shang

Background: MicroRNAs (miRNAs) play important roles in the carcinogenesis and progression of hepatocellular carcinoma (HCC). Previous studies have shown that miR-3144 is down-regulated in HCC tissues. The present study investigated the expression and biological roles, underlying mechanisms of miR-3144 in HCC cell lines. Methods and material: RT-qPCR analysis was performed to detect miR-3144 expression in the HCC cell lines and normal hepatic cell line. CCK-8 assay showed that the effect of miR-3144 expression on cell proliferation. Using wound healing assay and Transwell assay to detect the effect of miR-3144 on cell invasion and migration of HCC. Flow cytometry assay showed that miR-3144 induced apoptotic cell death in the SK-HEP-1 cells. Luciferase reporter assay was performed to evaluate the interaction between miR-3144 and the Steap4 3′-UTR. Western blotting assay were performed to investigate the effect of miR-3144 expression on the expression of CDK2, cyclinE1, p21, MMP2, MMP9 and Steap4. Results: MiR-3144 expression was downregulated in HCC cell lines. MiR-3144 overexpression inhibited the proliferation of HCC cells via regulating CDK2, cyclinE1 and p21 in SK-HEP-1 cells. MiR-3144 suppressed the migration and invasion of HCC cells via decreasing the MMP2 and MMP9. Further, miR-3144 promotes cell apoptosis of HCC. Moreover, miR-3144 negatively regulated Steap4 expression by directly binding to the 3′-UTR of Steap4 mRNA. Conclusion: Our results suggested that miR-3144 may be a novel target for future HCC therapy.


2021 ◽  
Vol 11 ◽  
Author(s):  
Li-Man Li ◽  
Chang Chen ◽  
Ruo-Xi Ran ◽  
Jing-Tao Huang ◽  
Hui-Lung Sun ◽  
...  

The clinical outcomes of hepatocellular carcinoma (HCC) remain dismal. Elucidating the molecular mechanisms for the progression of aggressive HCC holds the promise for developing novel intervention strategies. The transactivation response element RNA-binding protein (TRBP/TARBP2), a key component of microRNA (miRNA) processing and maturation machinery has been shown to play conflicting roles in tumor development and progression. We sought to investigate the expression of TARBP2 in HCC using well-characterized HCC cell lines, patient-derived tissues and blood samples. Additionally, the potential prognostic and diagnostic value of TARBP2 in HCC were analyzed using Kaplan-Meier plots and ROC curve. Cell counting kit‐8 (CCK‐8), wound healing and transwell assays examined the ability of TARBP2 to induce cell proliferation, migration, and invasion in HCC cell lines. RNA sequencing was applied to identify the downstream elements of TARBP2. The interaction of potential targets of TARBP2, miR‐145 and serpin family E member 1 (SERPINE1), was assessed using luciferase reporter assay. TARBP2 expression was down-regulated in HCC cell lines relative to normal hepatocyte cells, with a similar pattern further confirmed in tissue and blood samples. Notably, the loss of TARBP2 was demonstrated to promote proliferation, migration, and invasion in HCC cell lines. Interestingly, the reduction of TARBP2 was shown to result in the upregulation of SERPINE1, also known as plasminogen activator inhibitor (PAI-1), which is a vital gene of the HIF-1 signaling pathway. Knockdown of SERPINE1 rescued the TARBP2-lost phenotype. Moreover, TARBP2 depletion induced the upregulation of SERPINE1 through reducing the processing of miR-145, which directly targets SERPINE1. Finally, overexpression of miR-145 repressed SERPINE1 and rescued the functions in sh-TARBP2 HCC cells. Our findings underscore a linear TARBP2-miR-145-SERPINE1 pathway that drives HCC progression, with the potential as a novel intervention target for aggressive HCC.


2018 ◽  
Vol 96 (3) ◽  
pp. 365-371 ◽  
Author(s):  
Zhengwei Li ◽  
Ying Wang

Recent research suggested that microRNA 96 (miR-96) might function as an oncogene in several types of cancers. Therefore, the purpose of this study was to probe into the mechanism of miR-96 in hepatocellular carcinoma (HCC) cells. HCC tissues and non-tumorous tissues, HCC cell lines, and healthy cell lines were all involved in this study. Quantitative real-time PCR (qRT-PCR) and Western blot were used to detect miR-96 and SOX6 mRNA and protein expressions. The direct regulation of miR96 on SOX6 was confirmed by luciferase reporter assays. Cell proliferation and growth were determined by MTT (3-(4,5-dimethyl–2-thiazolyl)–2,5-diphenyl–2-H-tetrazolium bromide) assay and colony formation assay. Wound healing and transwell assay were employed for migration and invasion analyses. Finally, SPSS 21.0 and GraphPad 7.0 were applied for statistical analyses. In HCC tissues, miR-96 was highly expressed while SOX6 was lowly expressed. The overexpression of miR-96 reversely inhibited the expression of SOX6, contributing to the promotion of the biological functions of HCC cells. miR-96 could promote cell proliferation, migration, and invasion in HCC by targeting SOX6.


2020 ◽  
Vol 64 (4) ◽  
Author(s):  
Shufeng Xiao ◽  
Haoren Tang ◽  
Yao Bai ◽  
Renchao Zou ◽  
Zongfang Ren ◽  
...  

Studies have shown that swertiamarin (STM) has multiple biological activities, but its anti-tumour effects and molecular mechanisms are still unclear. The present research aimed to validate the STM’s impacts on the proliferation, migration, and invasion of hepatocellular carcinoma (HCC) cells, and to study its potential mechanism. Two HCC cell lines were treated with STM. Tumour growth was observed by the mouse tumour xenografts model. HCC cell lines stably expressing T-cell lymphomas 1 (FRAT1) were generated by lentivirusmediated overexpression. Cell viability, proliferation, migration, and invasion were observed using Cell Counting Kit-8 (CCK8), the xCELLigence Real-Time Cell Analyzer system (RTCA), and transwell analysis, respectively. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were used to observe the expression of FRAT1 and proteins related to the Wnt/β-catenin signalling pathway. Tumour growth was inhibited by STM in vivo. STM suppressed the proliferation, migration, and invasion of HCC cells. STM negatively regulated FRAT1 expression, whereas overexpressed FRAT1 blocked the anti-tumour function of STM. The results revealed that STM suppressed the FRAT1/Wnt/β-catenin signalling pathway. The findings of this study provide new insights into investigation of therapeutic strategies against HCC.


Sign in / Sign up

Export Citation Format

Share Document